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terests were on the electronic spectral studies to interpret the 

optical and other data.12 The detailed molecular orbital 

treatments for square pyramidal oxovanadium (IV) complexes 

has been suggested that these complexes may have C4v 

symmetry?3-16

As shown in Table 4, the calculated dipole moments for 

VO(acac)2 complex in benzene solution, using equation (10), 

is in agreement with the experimental dipole moments. Small 

difference between the theoretical dipole moment and the 

observed value may however be due to the solvent effect on 

the dipole moments17 but the experimental value in dioxane 

solution is slightly higher than that of benzene solution. Table 

4 also shows that the calculated dipole moments for adducts 

of bisacetylacetonato(oxo)vanadium(IV) with dioxane in diox­

ane solution is in agreement with the observed values. This 

calculated results may suggest that bisacetylacetonato(oxo)- 

vanadiumdV) interact with oxygen-containing ligand to form 

adducts and the results of Table 4 may also suggest that this 

calculation method of the dipole moments for square pyramidal 

complexes is more superior than other approaches we have 

adopted in calculating the dipole moments for transition metal 

complexes a옹 far as the calculation of the dipole moments of 

square pyramidal complexes is concerned. This work may be 

applied to calculate the dipole moments for square pyramidal 

complexes and may predict the geometric structure in inert 

or aprotic solvent solutions.
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A reduced condition for liquid-gas phase transition from the singularity of compressibility is derived using diagrammatic 

approach and is examined in the hard sphere system. The condition turns 이it that the Percus-Yevick and the Hyper-Netted- 

Chain approximation never conceive the idea of phase transition, and explains that the liquid-gas transition does not exist 

in hard sphere system. The solid-fluid transition is considered on the viewpoint of correlation function and diagrammatic analysis.

Introduction

Knowledge of the radial distribution function g⑺ is the 

essential prerequisite for a complete static description of 

homogeneous classical liquids whose molecules are taken to 

interact through effective two-body forces. The radial 

distribution function is expressed from the diagrammatic 

analysis1 of density expansion with three unknowns, as is given 

by

g(r)=e-3u(r){i+N(r)}+e"”<r)ZS) (1-a)

Z(r)=eNlri+E(r)- {1+N(r)} (1-b)

where N(r) is analyzed from the nodal group of which elements 

have at least one nodal point, E(r) is from the cross-bridged 

group which has no nodal point, p is 1/kT and w(r) is the pair 

potential. These functions also satisfy following equations
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h (r) =N (r) +c (r) (2-a)

h(T)=C (、T)+ 0 JdF' h (H -衬 \ ) c(T‘) (2-b)

Eq.(2-b) is the Omstein-Zemike(O-Z) equation2 defining the 

direct correlation function c(r) in terms of h(r)-g(r)-l. Natural­

ly from Eq.(2), the nodal group becomes a space-evolved in­

direct part of O-Z equation. It is helpful to rearrange the direct 

correlation function as follows,

c(r)=f(r) {l+N(r)}+eF"ZS) (3)

where/(r) is the Mayer function Le.t = -1. It is easi­

ly seen, in this arrangement, that the PY equation3-4 neglects 

all Z侦),and the Hyper-Netted-Chain (HNC)5-6 equation does 

E(r) only. Therefore,

ZfyS)=0 (4-a)

2hnc (r)=eNlrl- (4-b)

The PY approximation generates the nodal group, Mr), only 

which is solved analytically in case of hard-sphere potential. 

It is of interest, in case of the PY approximation, that the same 

term is neglected from both of exact g(r) and c(r). From this 

stand point, Croxton7-8 has proposed an extension of the PY 

theory which, he claimed, provides a theory of the solid-fluid 

transition for hard sphere system. He proposed, so called, 

"watermelon'' integrals which are a particular choice of the 

diagrams of E group, but the adequate choice is difficult con­

sidering the cancellation of each other groups and the coeffi­

cients are not correct.9 However it is indicative. The approach 

might be worth pursuing and refining. It is shown, in this 

paper, that a reduced condition for liquid-gas phase transi­

tion is derived and that the PY or HNC approximations do 

not provide the phase transition theory. The solid-fluid phase 

transition is discussed in terms of correlation function and 

diagrammatic approach.

Theory

Condition of Liquid-Gas Phase Transition
Croxton8 thought that the analytical solution of exact c(r) 

of hard core(r<a) is the solution of c(r) of PY equation because 

of no contribution of the second term in Eq.(3) due to e디^(가 

factor, whether Z(r) has any value in the region. This is incor­

rect, because PY equation-generated N(r) is all the N group 

to the second power of density expansion, however, not all 

the N group of higher order than the second, i.e., because such 

terms of N(r) are neglected in the PY equation,

疽(A+修} +产】+合)…(5) 

that one part of nodal point is the term that is neglected in 

the PY approximation. Thus Eqs.(l-a) and (3) can be express­

ed as follows,

g(r)=eowr} {l+MY(r)}+a袂hV'S)+2』5ZS) (6)

and

c (r) =/(r) U+Npy(r)^+f(r)Nz (r)+百*"Z(r) ⑺

where N'(r) is 7Vaii (r)-JVPY(r) and NW) is the nodal group 

of solution of the PY equation and is neglected such terms 

in Eq.(5) (see the diagrams in ref.l). The second term of Eq.(7) 

shows clearly that the exact c(r) is different from the PY c(r) 

by the factor of TV'(” for r<o, even though the third term is 

zero at r<o.

Some thermodynamic properties have singular values at 

the phase transition. The compressibility is expressed in terms 

of direct correlation function as is given by

瘩"*品 (8)

where c(0) is the Fourier transform of c(r) when = 0 in the 

following equation,

패) =¥匕 (r)sin (kr)dr (9)

And the O-Z equation in this form is

h(k) =c (A) +pc (k)h(k') (10)

and thus

=pc (k)h(k) (11)

Thus the Fourier transform of Nf is equal to

将=，。{号丫+(面)+혀 (12)

where (k) is omitted for simplicity and d is the Fourier 

transform of 厂阳하 Z(r). Here, the integration is separated in­

to two terms for any function A(f)t

A (k) =A0 (k) + 瓦(k)

=rM (r)sin(Ar)dr+j^ J r2A (r)sin(kr)dr (13)

where the subscript 0 denotes the first part and 1 denotes the 

second. Eq.(12) is then given by

W = 〃 伝PY w +d) - N； (*Y +N； +d) +d (APV +用 +&}

(14) 

or

話 {3y W + j) + j (Apy + 用 +d) '项 m
也 二 二---- 二------------------ 1,10；

l+pg+M'+d)

And

c (r) = cPY (r) -|-/，(r)2V/ (r)4-d (r) (16)

thus the Fourier transform of c(r) is given by,

c =— N： +d (17)

Substituting No in Eq.(15) to Eq.(17).

r q {J (斤《+1)+Mpy+M서墓)「一斤《 丁

c — cPY — 二 — - --------------------l~a lloj
l+“5+M+d)

which yields that

c {1+q (片py+此 +』)} = cPY + p cPY (19)

The condition of liquid-gas phase transition is c(0)=

in Eq.(8), and therefore

丄{1 + q (hPV (0)+用(0)+成0)}=膈丫 (0)+d(0)项;(0) (20) 

P

where the O-Z equation is used to cancel CpY(0). After 
cancelling 如丫(0) and J(0) of both sides, it is obtained that

M(0)——4 (21)

2p

i.e. t the phase transition condition becomes
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Table 1. The numerical representation of individual groups

r 

z>=0.6
Mr) Mr) 龙 PY = N?y

1.00 1.613 1.362 1.460 -.402 -.250

1.05 1.259 1.088 1.186 -.273 -.213

1.10 .956 .859 .942 -.188 -.178

1.15 .707 .657 .726 -.122 -.147

1.20 .505 .480 ,538 -.072 -.121

1.25 .342 .327 .377 -.032 -.102

阵 0.08

1.00 3.026 2.306 2.581 -.913 -.544

1.05 2.056 1.706 1.947 -.588 -.409

1.10 1.337 1.186 1.407 -.337 -.318

1.15 .839 .784 .957 -.174 -.259

1.20 .493 .456 .592 -.055 -.215

1.25 .243 .193 .304 .025 -.175

1.30 .056 -.001 .082 .004 -.135

1.35 -.083 -.157 -.080 .007 -.102

1.40 -.182 -.252 -.193 .005 -.078

1.45 -.248 -.308 -.265 .002 -.061

f t허N‘ (r)dr= — (22)

J6 Lp

The N\r) 아lown in Eq.(22) is the difference of the nodal group 

that is generated by PY approximation from the total N(r) of 

exact RDF(see Eq.(5) for example). With this reduced condi­

tion, the function in which r is less than hard core diameter 

is no longer needed. This lessens the troublesome of thinking 

the physical meaning of direct correlation function in the 

region of r<a.

This condition provides following arguments; (1) The PY 

approximation does not predict the phase transition because 

the reduced condition is found in their neglected groups nor 

the HNC approximation as well since the HNC equation also 

neglects some of (2) There is no liquid-gas phase tran­

sition for hard sphere system. The reasons are; the liquid­

gas phase transition occurs at low density, and thus the right 

hand side of Eq.(22) is much large, however, the left hand side 

cannot have the large values, because the lowest power of NW 

is P3. It is known that the structure factors of dense liquid can 

be interpreted with a hard sphere model.10 But the simula­

tion of hard sphere system is like the liquid state of high 

temperature over the critical point, namely, the fluid state 

(even though the hard sphere potential is temperature indepen­

dent), or the liquid-gas equilibrium line is not exist in the phase 

diagram in case of hard sphere system.

Contribution of Individual Groups and Phase Transition
Of the two typical computer simulation (molecular 

dynamics(MD) and Monte Carlo(MC)) methods, the MC 

results11 of hard sphere system are not valid since the value 

of h(r) is lower than Z;PY(r), in case of r=o. The exact A(o) 

must be larger than 如丫⑹ because the neglected term Z(o) 

is always positive at the density less than unity, while the MD 

results satisfy this condition and the MD technique has been 

considered as an exact method.

Verlet and Weis12 have proposed the correct RDF of hard 

sphere by adding the self-consistent empirical term to PY 

result, and the computer program is available.13 They claimed 

that the RDF obtained in their way differs from the "exact'' 

one (MD result) by at most 0.03. Henderson et al.14 obtained 

the exact direct correlation function with the Verlet and Weis' 

h(r) and O-Z equation in Eq.(2) and suggested the empirical 

equation. The direct correlation function of r<o is the Z(r) itself 

for hard sphere potential. The contributions of separated 

groups, i.e., the two unknowns in Eq.(l) can be calculated from 

the k(r) if the exact one is known. Table 1 shows what the 

values are like. An exact h(f) is obtained using the program 

of ref.13, N侦)is by solving Eq.(2) and then E(分 is from Eq.(l). 

仇py(尸)is the solution of the PY equation. There are several 

methods15 for the calculations by living Eq.(2). Np), the sub­

traction of the fourth column from the third in Table 1, is 

negative interestingly and it is speculated that the negative 

sign in Eq.(22) is from this fact. The last column is the lowest 

term of density expansion of E group and is calculated by in­

tegrating directly for the comparison to E(r).

The characteristics of the two phase-transition (solid-liquid 

and liquid-gas) are different in their original natures. The 

solid-liquid (or more generally solid-fluid) transition is a mat­

ter of packing. In a solid phase, the particles are not free in 

their movements. The E group is important to complete the 

bridges between third particles, while TV and without con­

sidering E group have no confinement between the third par­

ticles whether they are overlapped or not. Another example 

of the phase transition is the sudden lowering of pressure with 

increasing density. In hard sphere system, the pressure is 

determined by the height of h(a). At the transition region, from 

fluid to solid, h(o) has to decrease rapidly. The neglected Z(a) 

has always a positive value and increases with density in­

crease. But any of typical graphs do not conceive the idea of 

phase transition, because no diagram shows discontinuous 

behaviors at phase transition but all the diagrams are expected 

to be continuous, and thus the phase transition is a many body 

problem as is indicated in the Lee-Yang theory.16

The liquid-gas phase transition is different from that of 

solid-fluid, because Eq.(22) 옹hows no expectation even though 

we calculate all of the diagrams with hard sphere potential. 

Thus it is natural to say that the liquid-gas phase transition 

occurs due to the attractive interactions. However, the 

repulsive forces dominate the quantitative behavior of the li­

quid structure factor.17

The direct correlation function of low density limit is the 

Mayer function itself. As a simplest form of attraction, we 

can see, in case of a square well potential, that the phase tran­

sition condition in Eq.(22) should be satisfy the following equa-

3
一戶£==]"( +i)/(廿一 1)} (23)

tion, in which the direct correlation function is approximated 

to the Mayer function in which £ and a are the respective depth 

and width of the potential. Thus the liquid state in equilibrium 

with the gaseous state has non-negligible attractive interac­

tions to condense even at low density while the properties of 

liquid state have been simulated with repxilsive forces only.

Conclusion

The diagrammatic approach shows the definite contribu­

tions of the approximated integral equations for RDF. It also 

truns out that the approximations known so far have no 

behaviors of phase transitions and that the liquid-gas phase 
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transition i옹 a matter of attractive forces, while the liquid pro­

perties are dominantly affected by repulsive forces. The hard 

sphere system without attractive forces never distinguishes 

its liquid and gas states. It is worth pursuing to formulate an 

approximation of integral equation which previews a satisfac­

tory phase transition by selecting some of nodal group and/or 

E group.
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Reaction of a-cyano-^-phenylacrylic acid derivatives (I) with thioglycolic acid in the molar ratio of 1:2 in saturated sodium 

bicarbonate solution yielded 3-(4 -oxo-2 -thia2olin-2 -yl)-2-phenyl-4-oxotetrahydrothiophene derivatives (V). Thioglycolic 

acid was found to be added not only to carbon-carbon double bond but also to carbon-nitrogen triple bond and those adducts 

were cyclized to V.

Introduction

As a part of continuous investigation on the syntheses of 

thiol derivatives by nucleophilic addition, the reactions of thiol 

with p-nitrostyrene1-2 and co^-diacetylstyrene3 have been 

reported recently. Much information has been appeared in the 

literature concerning the anticancer and antimicrobial ac­

tivities of these thiol adducts.4-7

Elnagdi, et al.,6 prepared 3,3-dicyano-2-phenyl-4- 

oxotetrahydrothiophene and 2-(4-oxo-2-thiazolin-2-yl) cin- 

namonitrile by the addition of thioglycolic acid to benzyliden- 

malononitrile in refluxing pyridine. This paper presents our 

study of the addition of thioglycolic acid to a-cyano-/3- 

phenylacrylic acid derivatives.

Results and Discussion

When a-cyano-^-phenylacrylic acid (la) was treated with 

thioglyc이ic acid in the molar ratio of 1:2 in saturated sodium 

bicarbonate solution, a product of molecular formula 

CuHnNS2O2 was formed. The IR spectrum of the product 

revealed absorption band at 1780 cm'\ which is attributable 

for C = 0 group in cyclic ketone. The mass spectnim shows 

the molecular ion of m/e 277. Intensity ratio of M + 2 peak 

vs. M+ peak is 11.43% : 100%, which represents the presence 

of two sulfur atoms (calculated for CnHuNSjOj : 10.25%).


