• Title/Summary/Keyword: hard elastomer

Search Result 26, Processing Time 0.02 seconds

Fabrication of Nanopatterned PDMS Elastic Stamp Mold Using Surface Treatment of Nanotemplate (나노템플레이트 표면처리를 통한 나노패턴이 형성된 PDMS 탄성 스탬프 몰드 제작)

  • Park, Yong Min;Seo, Sang Hyun;Seo, Young Ho;Kim, Byeong Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.38-42
    • /
    • 2015
  • Polydimethylsiloxane (PDMS) is a widely used material for replicating micro-structures because of its transparency, deformability, and easy fabrication. At the nanoscale, however, it is hard to fill a nanohole template with uncured PDMS. This paper introduces several simple methods by changing the surface energy of a nanohole template and PDMS elastomer for replicating 100nm-scale structures. In the case of template, pristine anodic aluminum oxide (AAO), hydrophobically treated AAO, and hydrophillically treated AAO are used. For the surface energy change of the PDMS elastomer, a hydrophilic additive and dilution solvent are added in the PDMS prepolymer. During the molding process, a simple casting method is used for all combinations of the treated template and modified PDMS. The nanostructured PDMS surface was investigated with a scanning electron microscope after the molding process for verification.

Gas Permeation Properties of Carbon Dioxide and Methane for $PEBAX^{TM}$/TEOS Hybrid Membranes ($PEBAX^{TM}$/TEOS 하이브리드 분리막을 통한 이산화탄소와 메탄의 기체투과특성)

  • Kim, Hyunjoon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.460-464
    • /
    • 2011
  • Poly(ether-block-amide)(PEBA, $PEBAX^{TM}$) resin is a thermoplastic elastomer combining linear chains of hard-rigid polyamide block interspaced soft-flexible polyether block. It was believed that the hard polyamide block provides the mechanical strength and permeation selectivity, whereas gas transport occurs primarily through the soft polyether block. The objective of this work was to investigate the gas permeation properties of carbon dioxide and methane for $PEBAX^{TM}$-1657 membrane and compare with those obtained for other grade of $PEBAX^{TM}$, $PEBAX^{TM}$-2533. And the organic/inorganic hybrid membranes were prepared using $PEBAX^{TM}$ and TEOS(tetraethoxysilane) by sol-gel process, and gas permeation properties were studied. $PEBAX^{TM}$-2533 membrane exhibited higher gas permeability coefficients than $PEBAX^{TM}$-1657 membrane. This was explained by the increase of chain mobility. The permeability coefficients for $PEBAX^{TM}$/TEOS hybrid membranes were higher than pure $PEBAX^{TM}$ membranes. This results were explained by the reduction of crystallinity of polyamide block by the introduction of TEOS. Ideal separation factor of hybrid membranes does not change much. This might be due to the increase of solubility selectivity.

Synthesis of Multi Hydroxyl Chain-End Functionalized Polyolefin Elastomer with Poly(t-butylstyrene) Graft (Poly(t-butylstyrene) 그라프트를 가지는 수산기 말단 관능화 폴리올레핀 탄성체의 합성)

  • Lee, Hyoung Woo;Cho, Hee Won;Lee, Sang Min;Park, Sat Byeol;Kim, Dong Hyun;Lee, Bum Jae
    • Elastomers and Composites
    • /
    • v.48 no.1
    • /
    • pp.10-17
    • /
    • 2013
  • Polyolefin-g-poly(t-butylstyrene) as one of the high-temperature polyolefin-based thermoplastic elastomers was synthesized by the graft-from anionic living polymerization from the styrene moieties of the linear poly(ethylene-ter-1-hexene-ter-divinylbenzene) as a soft block to form the hard end blocks, poly(t-butylstyrene). The chemistry of the anionic graft-from polymerization involved complete lithiation of the pendant styrene unit of the soft polyolefin elastomer with sec-BuLi/TMEDA followed by the subsequent graft anionic polymerization of 4-tert-butylstyrene with Mn=10,000~30,000 g/mol. The graft-from living anionic polymerization were very effective and the grafting size increased proportionally with increasing monomer concentration and the reaction times. The synthetic methodology for the multi-hydroxyl chain-end modified polyolefin-g-poly(t-butylstyrene) was proposed by using the thiol-ene click reaction between 2-mercaptoethanol and the polyolefin-g-[poly(t-butylstyrene)-b-high vinyl polyisoprene], which was obtained from the subsequent living block copolymerization using polyolefin-g-Poly(t-butylstyrene) with isoprene. The result indicated that this process produced a new well-defined functionalized graft-type polyolefin-based TPE with high $T_g$ hard block(> $145^{\circ}C$).

Synthesis and Properties of Poly(ether-b-ester)Thermoplastic Elastomers (Poly(ether-b-ester) Thermoplastic Elastomers의 합성 및 물성 연구)

  • Kim, Hong Seon;Joung, Maeng Sig
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.1
    • /
    • pp.119-124
    • /
    • 2001
  • Dimethyl terephthalate (DMT). 1.4-butanediol (1.4-BD) and poly (tetramethylene ether) glycol (PTMG) in the molecular weight of 2000 (g/mol) were used to synthesize poly(ether-b-ester) thermoplastic elastomers (TPEEs). The final copolymers were annealed to improve thermal stability at elevated temperatures and mechanical properties. This study showed that as the proportion of soft segment increases melting temperature and degree of crystallinity of TPEEs decrease constantly. In case of mechanical properties like flexural strength and flexural elastic modulus. $35-PTMG^{2000}$ indicates the highest values due to more efficient physical interlock.

  • PDF

Contact Analysis Between Rubber Seal, a Spherical Particle and Coated Steel Surface (시일과 코팅된 스틸면 사이의 구형 입자에 의한 접촉해석)

  • Park, Tae-Jo;Jo, Hyeon-Dong
    • Tribology and Lubricants
    • /
    • v.25 no.4
    • /
    • pp.225-230
    • /
    • 2009
  • Seals are very useful machine components in protection of leakage of lubricant or working fluid, and incoming of debris from outside. Various elastomer are widely used as sealing materials and the shaft surfaces are generally coated with high hardness material after heat treatment. It is generally known that the foreign debris and wear particles get stuck into sealing surface, the steel shaft surface can be damaged and worn by mainly abrasive wear. In this paper, using MARC, contact analysis are conducted to show the hard coated steel shaft surface can be fatigue failed by very small elastic particle intervened between seal and steel surface. Variations of contact and von-Mises stress distributions and contact half-widths with interference and coating thickness are presented. The maximum von-Mises stress occurs always in the coating layer or between coated layer/substrate interface. Therefore the coated sealing surface can be fatigued and then failed by very small particles. The results can be used in design of sealing surface and further studies are required.

Filling Imbalance in Injection Mold with Branch Type Runner System (나뭇가지형 러너시스템을 갖는 사출금형에서의 충전 불균형)

  • Han, Dong-Yeop;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.45-50
    • /
    • 2007
  • Recently, the study for filling imbalance in thermoplastic polymer has gradually been increased. However, it is hard to find the researches for filling imbalance of thermoplastic elastomer(TPE). The experiment of filling imbalance was conducted for thermoplastic vulcanize(TPV) and PP, ABS polymers in the mold with un-geometrically balanced runner system(Branch Type Runner System). In this experiment, the effects of the melt temperature, injection pressure and injection speed on the filling imbalance were investigated.

  • PDF

The Development of Seismic Monitoring for a Base-Isolated Building System (지진격리 구조물의 지진모니터링 시스템 개발)

  • 김성훈;조대승;박해동;김두훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.247-251
    • /
    • 2001
  • Nowadays, base isolation systems such as lead-rubber bearing, elastomer bearing and sliding bearing have been installed to the various structures to prevent the disaster from seismic. The performance of base isolation system have been well proved by model-scale experiments and numerical analysis. However. the seismic response data measured at real large base-isolated structures is still insufficient. This paper presents a seismic monitoring system, acquiring real-time acceleration signals up to 32 channels, displaying time history and spectrum of the signals, storing the acquired data at a PC hard disk, and replaying the saved data. Moreover, the system can be operated without any limitation for monitoring period by automatic management of stored data file. The developed system has been installed at a real base-isolated building using lead-rubber bearings and we expect its seismic response data with ground motion signal can be well licquired in case of earthquake occurrence.

  • PDF

A study of plastic plateau disappearance in stress-strain curve of annealed polypropylene films during stretching

  • Lei, Caihong;Wu, Shuqiu;Xu, Ruijie;Xu, Yunqi;Peng, Xinlong
    • Advances in materials Research
    • /
    • v.2 no.2
    • /
    • pp.111-118
    • /
    • 2013
  • The changes of plastic plateau in the stress-strain curves of annealed polypropylene (PP) films during stretching under room temperature were followed and the corresponding melting properties and microstructure were characterized by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). It was found that during stretching the plastic plateau disappeared progressively with the increase of drawing ratio. At the same time, the endotherm plateau in DSC curves also disappeared progressively. The presence of the plastic plateau was attributed to the stretching of unstable crystalline part which was formed by tie chains around initial row-nucleated lamellae structure during annealing. During stretching, the unstable part was stretched and converted to bridges connecting separated lamellae. There was direct relationship between the disappearance of plastic plateau and pore formation.

Synthesis and Characterization of GAP or GAP-co-BO Copolymer-based Energetic Thermoplastic Polyurethane (GAP 및 GAP-co-BO Copolymer계 에너지 함유 열가소성 폴리우레탄의 합성 및 특성)

  • Seol, Yang-Ho;Kweon, Jeong-Ohk;Kim, Yong-Jin;Jin, Yong-Hyun;Noh, Si-Tae
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.673-680
    • /
    • 2019
  • GAP or GAP-co-BO based energetic thermoplastic elastomers (ETPEs) were synthesized by changing the hard segment content percent in the range of 30~45% by 5% difference. Thermal and mechanical properties of GAP-co-BO based ETPEs were compared to those of GAP based ETPEs. FT-IR results showed that the capability of forming hydrogen bond increases with increasing the hard segment content in GAP/GAP-co-BO based ETPE, and also the GAP-co-BO based ETPEs are stronger than GAP based ETPEs in the hydrogen bond formation. DSC and DMA results showed that the glass transition temperature (Tg) of GAP based ETPEs increased with the increment of the hard segment content, while the Tg of GAP-co-BO based ETPEs was maintained even the hard segment content increased. The storage modulus at room temperature of the GAP-co-BO based ETPEs was higher than that of the GAP based ETPEs. This was due to the strong phase separation behavior of the hard and soft segment of GAP-co-BO based ETPEs, which further resulted in the stronger breaking strength and lower tensile elongation at break point for GAP-co-BO based ETPE than the GAP based one.

Transport Properties of CO2 and CH4 using Poly(ether-block-amide)/GPTMS Hybird Membranes (Poly(ether-block-amide)/GPTMS 하이브리드 분리막을 이용한 이산화탄소와 메탄의 투과특성)

  • Lee, Keun Chul;Kim, Hyunjoon
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.653-658
    • /
    • 2016
  • Poly(ether-block-amide)(PEBAX$_{(R)}$) resin is a thermoplastic elastomer combining linear chains of hard-rigid polyamide block interspaced soft-flexible polyether block. It was believed that the hard polyamide block provides the mechanical strength and permselectivity, whereas gas transport occurs primarily through the soft polyether block. The objective of this work was to investigate the gas permeation properties of carbon dioxide and methane for PEBAX$^{(R)}$-1657 membrane, and compare with those obtained for other grade of pure PEBAX$^{(R)}$, PEBAX$^{(R)}$-2533 and PEBAX$^{(R)}$ based hybrid membranes. The hybrid membranes based PEBAX$^{(R)}$ were obtained by a sol-gel process using GPTMS ((3-glycidoxypropyl) trimethoxysilane) as the only inorganic precursor. Molecular structure and morphology of membrane were analyzed by $^{29}Si$-NMR, DSC and SEM. PEBAX$_{(R)}$-2533 membrane exhibited higher gas permeability coefficients than PEBAX$^{(R)}$-1657 membrane. This was explained by the increase of chain mobility. In contrast, ideal separation factor of $CO_2/CH_4$ for PEBAX$^{(R)}$-1657 membrane was higher than PEBAX$^{(R)}$-2533 membrane. It was explained by the decrease of diffusion selectivity caused by increase of chain mobility. For PEBAX$^{(R)}$/GPTMS hybrid membrane, gas permeability coefficients were decreased with reaction time. Gas permeability coefficient of $CH_4$ was more significantly decreased than $CO_2$. It can be explained by the reduction of chain mobility caused by the sol-gel process, and strong affinity of PEO segment with $CO_2$. Comparing with pure PEBAX$^{(R)}$-1657 membrane, ideal separation factor of $CO_2/CH_4$ for PEBAX$^{(R)}$/GPTMS hybrid membrane has decreased to 4.5%, and gas permeability coefficient of $CO_2$ has increased 3.5 times.