• Title/Summary/Keyword: haptic

Search Result 583, Processing Time 0.022 seconds

Applications of haptic feedbacks in medicine (의료분야에서의 햅틱 피드백 응용)

  • Quy, Pham Sy;Seo, An-Na;Kim, Hyung-Seok;Kim, Jee-In
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.203-213
    • /
    • 2009
  • Medicine is one of great application fields where Virtual Reality (VR) technologies have been successfully utilized. The VR technologies in medicine bring together an interdisciplinary community of computer scientists and engineers, physicians and surgeon, medical educator and students, military medical specialists, and biomedical futurists. The primary feedback of a VR system has been visual feedback. The complex geometry for graphic objects and utilizing hardware acceleration can be incorporated with in order to produce realistic virtual environments. To enhance human-computer interaction (HCI), in term of immersive experiences perceived by users, haptic, speech, olfactory and other non-traditional interfaces should also be exploited. Among those, hapic feedback has been tightly coupled with visual feedback. The combination of the two sensory feedbacks can give users more immersive, realistic and perceptive VR environments. Haptic feedback has been studied over decades and many haptic based VR systems have been developed. This paper focuses on haptic feedback in term of its medical usages. It presents a survey of haptic feedback techniques with their applications in medicine.

  • PDF

A Study on Haptic Presentation Methods in the Experience Exhibition Spaces - With Experience Exhibition Space - (전시공간에서의 촉지적(Haptic)연출 방법에 대한 연구 - 체험전시 공간 중심으로 -)

  • Cho, Min-Hwa
    • Korean Institute of Interior Design Journal
    • /
    • v.24 no.6
    • /
    • pp.229-239
    • /
    • 2015
  • The 21st century is a multiplication age and social and cultural phenomena have become diverse and peoples' desires and individuality have become important. Accordingly, the sensibility that reflects human taste is also required in the exhibition space. The exhibitions in this age induce the direct cognition of senses or take interactive forms that contact diverse media and react. The purpose of this research is to define the concept of haptic presentation method in which the audience perceive in the exhibition space by themselves and the visual elements spread into other senses and perceive complexly, and to present the directional nature. To conduct this research, first, this researcher recognized that haptic sensory experiential research by analyzing the roles and transition history of exhibition space is needed for the present age Second, based on philosophical theories, four haptic sensory expression characteristics (medium nature, experiential nature, attractiveness, sensitiveness) were derived by substituting Giles Deleuze's four haptic spatial characteristics (grasping short distance, dispersed gaze, cognition of bodily movement, formation of synesthesia through complex senses) and six formative factors of exhibition space (space, form, size, light, quality of materials, and color). And the effective exhibition presentation methods were analyzed through six cases of experiential exhibition spaces. Accordingly, what matters in the experiential exhibition space is to produce the four characteristics: medium nature, experientiality, attractiveness, and sensitiveness in equilibrium. It is necessary for the designers to reflect it appropriately in producing so that the audience can think and experience by themselves. Accordingly, in this thesis, it could be seen that to produce the haptic production characteristics in the experiential exhibition space in equilibrium is the important factor in the experiential exhibition space. In conclusion, experiences in the exhibition space should be approached with the transcendental haptic presentation method by which even the space of actually unexperienced cognition can be expanded and experienced through the metastasis and tension of various senses. Also, researches on such senses should be developed continuously, and this researcher expects that this will become a stimulant to present a new directivity.

A Haptic Rendering Technique for 3D Objects with Vector Field (벡터 필드를 가진 3차원 오브젝트의 햅틱 렌더링 기법)

  • Kim, Lae-Hyun;Park, Se-Hyung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.4
    • /
    • pp.216-222
    • /
    • 2006
  • Vector field has been commonly used to visualize the data set which is invisible or is hard to explain. For instance, it could be used to visualize scientific data such as the direction and amount of wind and water field, transfer of heat through thermally conductive materials, and electromagnetic field. In this paper, we present a technique to enable intuitive recognition of the data though haptic feedback along with visual feedback. To add tactile information to graphical vector field, we model a haptic vector field and then apply it to the haptic map to guide a user to destination and haptic simulation of water field on 2D images whish can be used ill everyday life. These systems allow one to recognize vector information intuitively through haptic interface. We expect that the haptic rendering technique of vector field can be applied to various applications such as education, training, and entertainment.

Tactile Navigation System using a Haptic Device (햅틱 디바이스를 이용한 촉감형 네비게이션 시스템)

  • Lee, Dong-Hyuk;Noh, Kyung-Wook;Kang, Sun Kyun;Kim, Hyun Woo;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.807-814
    • /
    • 2014
  • In this paper, we proposed a haptic navigation system which used the tactile data for the user guides of the mobile robot to the reference point via tele-operation in unknown blind environment. This navigation system can enable a mobile robot to avoid obstacles and move to the reference point, according to the direction provided by the device guides through a haptic device consisting of a vibration motor in a blind environment. There are a great deal of obstacles in real environments, and so mobile robots can avoid obstacles by recognizing the exact position of each obstacle through the superposition of an ultrasonic sensor. The navigation system determines the direction of obstacle avoidance through an avoidance algorithm that uses virtual impedance, and lets users know the position of obstacles and the direction of the avoidance through the haptic device consisting of 5 vibration motors. By letting users know intuitionally, it lets the mobile robot precisely reach the reference point in unknown blind environment. This haptic device can implement a haptic navigation system through the tactile sensor data.

An Investigation of Haptic Interaction in Online Negotiation between different native language people

  • Chen, Meng;Okada, Shogo;Nitta, Katsumi
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.1
    • /
    • pp.11-20
    • /
    • 2012
  • Due to the development of internet technology, the online business trade becomes an active area. Online negotiation supporting systems have been developing very actively in recent years to meet the growing needs. We have been studying on the effect that the haptic device brings about in interaction through online negotiation between two parties. In order to meet the online negotiation's requirements, the developed interface should be able to protect user's anonymity, convey user's emotion and make the scene alive.In this study, we adopt haptic interaction as a means of conveying emotion in an online negotiation between Japanese and Chinese people. In this study, our goal is to investigate the effectiveness of haptic interaction in communications between Chinese and Japanese users and analyze the characteristis in operation the haptic device. We conducted online negotiation experiments with and without haptic interaction . The comparison experiments results show that the haptic feedback can help to convey the emotion and the sense of presence. The Chinese subjects' feedback for the questionaire concerning the emotional communication and the sense of presence varies slightly compared to the Japanese subjects. We also found when using the haptic device, the force feedback can influence subject's feelings.There is little significant difference between the advanced and the medium subjects in negotiation dialogues and the haptic device's operation, the beginner subjects are slightly at a disadvantage.

Haptic Rendering Algorithm for Collision Situation of Two Objects (두 객체가 충돌하는 상황에서의 햅틱 렌더링 알고리즘)

  • Kim, Seonkyu;Kim, Hyebin;Ryu, Chul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.35-41
    • /
    • 2018
  • In this paper, we define a haptic rendering algorithm for a situation that has collision between static object and single object. We classified video scenes into four categories which can be easily seen in video sequence. The proposed algorithm can detect which frame is suitable for haptic rendering by detecting the change of direction using motion estimation and change of shape using object tracking. As a result, a total of 13 frames are extracted from the sample video and playing time of these frames were calculated. We confirmed that the haptic effect appears in expected playing time by adding the appropriate haptic generating waveform thtough the haptic editing program.

Networked Haptic Virtual Environments Based on Stability and Transparency (안정성과 투명성을 고려한 촉감기반 네트워크 가상환경)

  • Lee, Seok-Hee;Kim, Jong-Won
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.59-64
    • /
    • 2008
  • In this paper, stability and transparency analysis for client/server haptic-based networked virtual environment (NVE) is introduced. From this analysis the appropriate communication structure for the more stable and transparent haptic interactions can be derived. Also, it is possible to expect and compensate the quality deterioration of haptic interactions according to certain network conditions In order to verify the usefulness of the analysis, simple haptic-based NVE application is implemented. For the stability verification, the vibration or strange movement of haptic interface and virtual object are measured under various network states. In addition, the usefulness of the proposed transparency analysis and network delay compensation scheme is verified by comparing distorted and compensated force feedbacks with real force feedback.

  • PDF

Six-degree-of-freedom Haptic Rendering using Translational and Generalized Penetration Depth Computation (선형 및 일반형 침투깊이를 이용한 6자유도 햅틱 렌더링 알고리즘)

  • Li, Yi;Lee, Youngeun;Kim, Young J.
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.3
    • /
    • pp.173-178
    • /
    • 2013
  • We present six-degree-of-freedom (6DoF) haptic rendering algorithms using translational ($PD_t$) and generalized penetration depth ($PD_g$). Our rendering algorithm can handle any type of object/object haptic interaction using penalty-based response and makes no assumption about the underlying geometry and topology. Moreover, our rendering algorithm can effectively deal with multiple contacts. Our penetration depth algorithms for $PD_t$ and $PD_g$ are based on a contact-space projection technique combined with iterative, local optimization on the contact-space. We circumvent the local minima problem, imposed by the local optimization, using motion coherence present in the haptic simulation. Our experimental results show that our methods can produce high-fidelity force feedback for general polygonal models consisting of tens of thousands of triangles at near-haptic rates, and are successfully integrated into an off-the-shelf 6DoF haptic device. We also discuss the benefits of using different formulations of penetration depth in the context of 6DoF haptics.

A Robust Adaptive Impedance Control Algorithm for Haptic Interfaces (강인적응 알고리즘을 통한 Haptic Interlace의 임피던스 제어)

  • Park, Heon;Lee, Sang-Chul;Lee, Su-Sung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.393-400
    • /
    • 2002
  • Teleoperation enables an operator to manipulate remote objects. One of the main goals in teleoperation researches is to provide the operator with the fueling of the telepresence, being present at the remote site. For these purposes, a master robot must be designed as a bilateral control system that can transmit position/force information to a slave robot and feedback the interaction force. A newly proposed impedance algorithm is applied for the control of a haptic interface that was developed as a master robot. With the movements of the haptic interface for position/force commands, impedance parameters are always varying. When the impedance parameters between an operator and the haptic interface and the dynamic model are known precisely, many model based control theories and methods can be used to control the device accurately. However, due to the parameters'variations and the uncertainty of the dynamic model, it is difficult to control haptic interfaces precisely. This paper presents a robust adaptive impedance control algorithm for haptic interfaces.

A Balance Training System using a Haptic Device and Its Evaluations (햅틱 장치를 이용한 균형 훈련 시스템 및 효용성 검증)

  • Yoon, JungWon;Afzal, Muhammad Raheel;Pyo, SangHun;Oh, Min-Kyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.971-976
    • /
    • 2014
  • Haptic device can be a useful rehabilitation tool in balance training. The proposed system is composed of a body-wear smartphone, Phantom Omni(R) device, and its control PC system. Ten young healthy subjects performed balance tasks with different postures during 30 seconds with their eyes closed. An Android program on the smartphone transferred mediolateral (ML) and anteroposterior (AP) tilt angles to the PC system, which can generate haptic command through haptic device. Statistical data analysis was performed using MATLAB(R). COP (Center of Pressure) related indexes were measured to see reduction in body sway. ANOVA showed that haptic device significantly reduced body sway. Intuitive balance guidance could be generated using an economical and small-sized commercial haptic device, making the system efficient.