• Title/Summary/Keyword: hand pattern recognition

Search Result 127, Processing Time 0.028 seconds

A Novel Door Security System using Hand Gesture Recognition (손동작 인식을 이용한 출입 보안 시스템)

  • Cheoi, Kyungjoo;Han, Juchan
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1320-1328
    • /
    • 2016
  • In this paper, we propose a novel security system using hand gesture recognition. Proposed system does not create a password as numbers, but instead, it creates unique yet simple pattern created by user's hand movement. Because of the fact that individuals have different range of hand movement, speed, direction, and size while drawing a pattern with their hands, the system will be able to accurately recognize only the authorized user. To evaluate the performance of our system, various patterns were tested and the test showed a satisfying result.

Dynamic Manipulation of a Virtual Object in Marker-less AR system Based on Both Human Hands

  • Chun, Jun-Chul;Lee, Byung-Sung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.618-632
    • /
    • 2010
  • This paper presents a novel approach to control the augmented reality (AR) objects robustly in a marker-less AR system by fingertip tracking and hand pattern recognition. It is known that one of the promising ways to develop a marker-less AR system is using human's body such as hand or face for replacing traditional fiducial markers. This paper introduces a real-time method to manipulate the overlaid virtual objects dynamically in a marker-less AR system using both hands with a single camera. The left bare hand is considered as a virtual marker in the marker-less AR system and the right hand is used as a hand mouse. To build the marker-less system, we utilize a skin-color model for hand shape detection and curvature-based fingertip detection from an input video image. Using the detected fingertips the camera pose are estimated to overlay virtual objects on the hand coordinate system. In order to manipulate the virtual objects rendered on the marker-less AR system dynamically, a vision-based hand control interface, which exploits the fingertip tracking for the movement of the objects and pattern matching for the hand command initiation, is developed. From the experiments, we can prove that the proposed and developed system can control the objects dynamically in a convenient fashion.

Hand Gesture Recognition Algorithm Robust to Complex Image (복잡한 영상에 강인한 손동작 인식 방법)

  • Park, Sang-Yun;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.1000-1015
    • /
    • 2010
  • In this paper, we propose a novel algorithm for hand gesture recognition. The hand detection method is based on human skin color, and we use the boundary energy information to locate the hand region accurately, then the moment method will be employed to locate the hand palm center. Hand gesture recognition can be separated into 2 step: firstly, the hand posture recognition: we employ the parallel NNs to deal with problem of hand posture recognition, pattern of a hand posture can be extracted by utilize the fitting ellipses method, which separates the detected hand region by 12 ellipses and calculates the white pixels rate in ellipse line. the pattern will be input to the NNs with 12 input nodes, the NNs contains 4 output nodes, each output node out a value within 0~1, the posture is then represented by composed of the 4 output codes. Secondly, the hand gesture tracking and recognition: we employed the Kalman filter to predict the position information of gesture to create the position sequence, distance relationship between positions will be used to confirm the gesture. The simulation have been performed on Windows XP to evaluate the efficiency of the algorithm, for recognizing the hand posture, we used 300 training images to train the recognizing machine and used 200 images to test the machine, the correct number is up to 194. And for testing the hand tracking recognition part, we make 1200 times gesture (each gesture 400 times), the total correct number is 1002 times. These results shows that the proposed gesture recognition algorithm can achieve an endurable job for detecting the hand and its' gesture.

A Hand Gesture Recognition Method using Inertial Sensor for Rapid Operation on Embedded Device

  • Lee, Sangyub;Lee, Jaekyu;Cho, Hyeonjoong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.757-770
    • /
    • 2020
  • We propose a hand gesture recognition method that is compatible with a head-up display (HUD) including small processing resource. For fast link adaptation with HUD, it is necessary to rapidly process gesture recognition and send the minimum amount of driver hand gesture data from the wearable device. Therefore, we use a method that recognizes each hand gesture with an inertial measurement unit (IMU) sensor based on revised correlation matching. The method of gesture recognition is executed by calculating the correlation between every axis of the acquired data set. By classifying pre-defined gesture values and actions, the proposed method enables rapid recognition. Furthermore, we evaluate the performance of the algorithm, which can be implanted within wearable bands, requiring a minimal process load. The experimental results evaluated the feasibility and effectiveness of our decomposed correlation matching method. Furthermore, we tested the proposed algorithm to confirm the effectiveness of the system using pre-defined gestures of specific motions with a wearable platform device. The experimental results validated the feasibility and effectiveness of the proposed hand gesture recognition system. Despite being based on a very simple concept, the proposed algorithm showed good performance in recognition accuracy.

Feature Extraction and Statistical Pattern Recognition for Image Data using Wavelet Decomposition

  • Kim, Min-Soo;Baek, Jang-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.831-842
    • /
    • 1999
  • We propose a wavelet decomposition feature extraction method for the hand-written character recognition. Comparing the recognition rates of which methods with original image features and with selected features by the wavelet decomposition we study the characteristics of the proposed method. LDA(Linear Discriminant Analysis) QDA(Quadratic Discriminant Analysis) RDA(Regularized Discriminant Analysis) and NN(Neural network) are used for the calculation of recognition rates. 6000 hand-written numerals from CENPARMI at Concordia University are used for the experiment. We found that the set of significantly selected wavelet decomposed features generates higher recognition rate than the original image features.

  • PDF

Application of Sensor Network Using Multivariate Gaussian Function to Hand Gesture Recognition (Multivariate Gaussian 함수를 이용한 센서 네트워크의 수화 인식에의 적용)

  • Kim Sung-Ho;Han Yun-Jong;Bogdana Diaconescu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.991-995
    • /
    • 2005
  • Sensor networks are the results of convergence of very important technologies such as wireless communication and micro electromechanical systems. In recent years, sensor networks found a wide applicability in various fields such as health, environment and habitat monitoring, military, etc. A very important step for these many applications is pattern classification and recognition of data collected by sensors installed or deployed in different ways. But, pattern classification and recognition are sometimes difficult to perform. Systematic approach to pattern classification based on modern teaming techniques like Multivariate Gaussian mixture models, can greatly simplify the process of developing and implementing real-time classification models. This paper proposes a new recognition system which is hierarchically composed of many sensor nodes haying the capability of simple processing and wireless communication. The proposed system is able to perform classification of sensed data using the Multivariate Gaussian function. In order to verify the usefulness of the proposed system, it was applied to hand gesture recognition system.

Pattern Recognition of Human Grasping Operations Based on EEG

  • Zhang Xiao Dong;Choi Hyouk-Ryeol
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.592-600
    • /
    • 2006
  • The pattern recognition of the complicated grasping operation based on electroencephalography (simply named as EEG) is very helpful on realtime control of the robotic hand. In the paper, a new spectral feature analysis method based on Band Pass Filter (simply named as BPF) and Power Spectral Analysis (simply named as PSA) is presented for discriminating the complicated grasping operations. By analyzing the spectral features of grasping operations with the use of the two-channel EEG measurement system and the pattern recognition of the BP neural network, the degree of recognition by the traditional spectral feature method based on FFT and the new spectral features method based on BPF and PSA could be compared. The results show that the proposed method provides highly improved performance than the traditional one because the new method has two obvious advantages such as high recognition capability and the fast learning speed.

The Hand Posture Recognition Using IR-Sensor Array (적외선센서 어레이를 이용한 손동작 검출 방법)

  • Song, Tae-Houn;Jeong, Soon-Mook;Jung, Hyun-Uk;Kwon, Key-Ho;Jeon, Jae-Wook
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.432-435
    • /
    • 2009
  • This paper proposes a hand posture recognition with pattern-matching method, embedding a simple paradigm using an Infrared sensor array. Our pattern-matching based hand posture recognition is specification supports fun and the user experience when communicating between humans and telecommunication devices, including robots. Our non-contact type input device (IR-Sensor Array) transmits commands to control mobile robots. It can also control Google Earth’s map searching programs, and other applications.

  • PDF

A study on the Automatic Recognition of Hand Printed Hangeul patterns by the Computer (전자계산기에 의한 필기체 한글 인식에 관한 연구)

  • 남궁재찬;김영건
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.5 no.1
    • /
    • pp.44-48
    • /
    • 1980
  • This paper proposes a method of the automatic recognition of the handprinted Hanguel patterns. A certain pattern oriented basic letters is normalized to the prototype Hanguel patten by the linking compansation and nomalization algorithm. Tree grammar is used in recognition process. Compared with the previous method. automata processing is simplified and the error is reduced by the new parsing method. This method shows the effectiveness for the constrained pattern. We expect that the new parsing method is very useful for the on-line pattern recognition.

  • PDF

The hand-drawn diagram recognition for OrCAD matching (OrCAD 정합을 위한 수작업 도면 인식)

  • Park, Young-Sik;Kim, Jin-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.229-235
    • /
    • 1996
  • CAD diagrams generally consists of many basic components: symbols, character, and connection lines. Thus, to recognize the diagrams, it is necessary to extract each components, and understand their meanings and relation among them. This paper describes a method for linking basic components extracted efficiently from hand-down diagrams to OrCAD data format. Experimental results with a hand-drawn diagrams of electronic and logic circuit show utility of the proposed method.

  • PDF