• Title/Summary/Keyword: hand pattern recognition

Search Result 127, Processing Time 0.031 seconds

A Study on Feature Projection Methods for a Real-Time EMG Pattern Recognition (실시간 근전도 패턴인식을 위한 특징투영 기법에 관한 연구)

  • Chu, Jun-Uk;Kim, Shin-Ki;Mun, Mu-Seong;Moon, In-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.935-944
    • /
    • 2006
  • EMG pattern recognition is essential for the control of a multifunction myoelectric hand. The main goal of this study is to develop an efficient feature projection method for EMC pattern recognition. To this end, we propose a linear supervised feature projection that utilizes linear discriminant analysis (LDA). We first perform wavelet packet transform (WPT) to extract the feature vector from four channel EMC signals. For dimensionality reduction and clustering of the WPT features, the LDA incorporates class information into the learning procedure, and finds a linear matrix to maximize the class separability for the projected features. Finally, the multilayer perceptron classifies the LDA-reduced features into nine hand motions. To evaluate the performance of LDA for the WPT features, we compare LDA with three other feature projection methods. From a visualization and quantitative comparison, we show that LDA has better performance for the class separability, and the LDA-projected features improve the classification accuracy with a short processing time. We implemented a real-time pattern recognition system for a multifunction myoelectric hand. In experiment, we show that the proposed method achieves 97.2% recognition accuracy, and that all processes, including the generation of control commands for myoelectric hand, are completed within 97 msec. These results confirm that our method is applicable to real-time EMG pattern recognition far myoelectric hand control.

A Real-Time Pattern Recognition for Multifunction Myoelectric Hand Control

  • Chu, Jun-Uk;Moon, In-Hyuk;Mun, Mu-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.842-847
    • /
    • 2005
  • This paper proposes a novel real-time EMG pattern recognition for the control of a multifunction myoelectric hand from four channel EMG signals. To cope with the nonstationary signal property of the EMG, features are extracted by wavelet packet transform. For dimensionality reduction and nonlinear mapping of the features, we also propose a linear-nonlinear feature projection composed of PCA and SOFM. The dimensionality reduction by PCA simplifies the structure of the classifier, and reduces processing time for the pattern recognition. The nonlinear mapping by SOFM transforms the PCA-reduced features to a new feature space with high class separability. Finally a multilayer neural network is employed as the pattern classifier. We implement a real-time control system for a multifunction virtual hand. From experimental results, we show that all processes, including virtual hand control, are completed within 125 msec, and the proposed method is applicable to real-time myoelectric hand control without an operation time delay.

  • PDF

A Wearable Interface for Tendon-driven Robotic Hand Prosthesis (건구동식 로봇 의수용 착용형 인터페이스)

  • Jung, Sung-Yoon;Park, Chan-Young;Bae, Ju-Hawn;Moon, In-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.374-380
    • /
    • 2010
  • This paper proposes a wearable interface for a tendon-driven robotic hand prosthesis. The proposed interface is composed of a dataglove to measure finger and wrist joint angle, and a micro-control board with a wireless RF module. The interface is used for posture control of the robotic hand prosthesis. The measured joint angles by the dataglove are transferred to the main controller via the wireless module. The controller works for directly controlling the joint angle of the hand or for recognizing hand postures using a pattern recognition method such as LDA and k-NN. The recognized hand postures in this study are the paper, the rock, the scissors, the precision grasp, and the tip grasp. In experiments, we show the performances of the wearable interface including the pattern recognition method.

Fast Template Matching for the Recognition of Hand Vascular Pattern (정맥패턴인식을 위한 고속 원형정합)

  • Choi, Kwang-Wook;Choi, Hwan-Soo;Pyo, Kwang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.532-535
    • /
    • 2003
  • In this paper, we propose a new algorithm that can enhance the speed of template matching of hand vascular pattern person verification or recognition system. Various template matching algorithms have advantages in the matching accuracy, but most of the algorithms suffer from computational burden. To reduce the computational amount, with accuracy maintained, we propose following template matching scenario as follows. firstly, original hand vascular image is re-sampled in order to reduce spatial resolution. Secondly, reconstructed image is projected to vertical and horizontal direction, being converted to two one dimensional (1D) data. Thirdly, converted data is used to estimate spatial discrepancy between stored template image and target image. Finally, matching begins from where the estimated order is highest, and finishes when matching decision function is computed to be over certain threshold. We've applied the proposed algorithm to hand vascular pattern identification application for biometrics, and observed dramatic matching speed enhancement. This paper presents detailed explanation of the proposed algorithm and evaluation results.

  • PDF

Hand Gesture Recognition for Understanding Conducting Action (지휘행동 이해를 위한 손동작 인식)

  • Je, Hong-Mo;Kim, Ji-Man;Kim, Dai-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.263-266
    • /
    • 2007
  • We introduce a vision-based hand gesture recognition fer understanding musical time and patterns without extra special devices. We suggest a simple and reliable vision-based hand gesture recognition having two features First, the motion-direction code is proposed, which is a quantized code for motion directions. Second, the conducting feature point (CFP) where the point of sudden motion changes is also proposed. The proposed hand gesture recognition system extracts the human hand region by segmenting the depth information generated by stereo matching of image sequences. And then, it follows the motion of the center of the gravity(COG) of the extracted hand region and generates the gesture features such as CFP and the direction-code finally, we obtain the current timing pattern of beat and tempo of the playing music. The experimental results on the test data set show that the musical time pattern and tempo recognition rate is over 86.42% for the motion histogram matching, and 79.75% fer the CFP tracking only.

  • PDF

Training-Free sEMG Pattern Recognition Algorithm: A Case Study of A Patient with Partial-Hand Amputation (무학습 근전도 패턴 인식 알고리즘: 부분 수부 절단 환자 사례 연구)

  • Park, Seongsik;Lee, Hyun-Joo;Chung, Wan Kyun;Kim, Keehoon
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.3
    • /
    • pp.211-220
    • /
    • 2019
  • Surface electromyogram (sEMG), which is a bio-electrical signal originated from action potentials of nerves and muscle fibers activated by motor neurons, has been widely used for recognizing motion intention of robotic prosthesis for amputees because it enables a device to be operated intuitively by users without any artificial and additional work. In this paper, we propose a training-free unsupervised sEMG pattern recognition algorithm. It is useful for the gesture recognition for the amputees from whom we cannot achieve motion labels for the previous supervised pattern recognition algorithms. Using the proposed algorithm, we can classify the sEMG signals for gesture recognition and the calculated threshold probability value can be used as a sensitivity parameter for pattern registration. The proposed algorithm was verified by a case study of a patient with partial-hand amputation.

A Study on Dynamic Hand Gesture Recognition Using Neural Networks (신경회로망을 이용한 동적 손 제스처 인식에 관한 연구)

  • 조인석;박진현;최영규
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.1
    • /
    • pp.22-31
    • /
    • 2004
  • This paper deals with the dynamic hand gesture recognition based on computer vision using neural networks. This paper proposes a global search method and a local search method to recognize the hand gesture. The global search recognizes a hand among the hand candidates through the entire image search, and the local search recognizes and tracks only the hand through the block search. Dynamic hand gesture recognition method is based on the skin-color and shape analysis with the invariant moment and direction information. Starting point and ending point of the dynamic hand gesture are obtained from hand shape. Experiments have been conducted for hand extraction, hand recognition and dynamic hand gesture recognition. Experimental results show the validity of the proposed method.

Automatic Recognition of Hand-written Hangout by the Phase Rotation (위상회전에 의한 필기체 한글의 자동인식)

  • 이주근;김홍기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.13 no.1
    • /
    • pp.23-30
    • /
    • 1976
  • In this paper, a method is proposed for the recognition of hand-written Hangeul. This is peiformed by extraction of the concave structural segments by phase rotation. Character patterns can be decomposed into the fundamental concave structural segments which are also categorized into segment sects, and the closure and phase features of each segment in set is represented by logics. By rotating the logic pattern, the topological and phase features of segment are extracted for the reliable recognition of the character. It is also evaluated that this method applies to a wide variety of shape, position and declination of the character.

  • PDF

MPEG-U-based Advanced User Interaction Interface Using Hand Posture Recognition

  • Han, Gukhee;Choi, Haechul
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.4
    • /
    • pp.267-273
    • /
    • 2016
  • Hand posture recognition is an important technique to enable a natural and familiar interface in the human-computer interaction (HCI) field. This paper introduces a hand posture recognition method using a depth camera. Moreover, the hand posture recognition method is incorporated with the Moving Picture Experts Group Rich Media User Interface (MPEG-U) Advanced User Interaction (AUI) Interface (MPEG-U part 2), which can provide a natural interface on a variety of devices. The proposed method initially detects positions and lengths of all fingers opened, and then recognizes the hand posture from the pose of one or two hands, as well as the number of fingers folded when a user presents a gesture representing a pattern in the AUI data format specified in MPEG-U part 2. The AUI interface represents a user's hand posture in the compliant MPEG-U schema structure. Experimental results demonstrate the performance of the hand posture recognition system and verified that the AUI interface is compatible with the MPEG-U standard.

Dynamic Hand Gesture Recognition Using CNN Model and FMM Neural Networks (CNN 모델과 FMM 신경망을 이용한 동적 수신호 인식 기법)

  • Kim, Ho-Joon
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.95-108
    • /
    • 2010
  • In this paper, we present a hybrid neural network model for dynamic hand gesture recognition. The model consists of two modules, feature extraction module and pattern classification module. We first propose a modified CNN(convolutional Neural Network) a pattern recognition model for the feature extraction module. Then we introduce a weighted fuzzy min-max(WFMM) neural network for the pattern classification module. The data representation proposed in this research is a spatiotemporal template which is based on the motion information of the target object. To minimize the influence caused by the spatial and temporal variation of the feature points, we extend the receptive field of the CNN model to a three-dimensional structure. We discuss the learning capability of the WFMM neural networks in which the weight concept is added to represent the frequency factor in training pattern set. The model can overcome the performance degradation which may be caused by the hyperbox contraction process of conventional FMM neural networks. From the experimental results of human action recognition and dynamic hand gesture recognition for remote-control electric home appliances, the validity of the proposed models is discussed.