• Title/Summary/Keyword: hand motion

Search Result 917, Processing Time 0.03 seconds

Implementation of DID interface using gesture recognition (제스쳐 인식을 이용한 DID 인터페이스 구현)

  • Lee, Sang-Hun;Kim, Dae-Jin;Choi, Hong-Sub
    • Journal of Digital Contents Society
    • /
    • v.13 no.3
    • /
    • pp.343-352
    • /
    • 2012
  • In this paper, we implemented a touchless interface for DID(Digital Information Display) system using gesture recognition technique which includes both hand motion and hand shape recognition. Especially this touchless interface without extra attachments gives user both easier usage and spatial convenience. For hand motion recognition, two hand-motion's parameters such as a slope and a velocity were measured as a direction-based recognition way. And extraction of hand area image utilizing YCbCr color model and several image processing methods were adopted to recognize a hand shape recognition. These recognition methods are combined to generate various commands, such as, next-page, previous-page, screen-up, screen-down and mouse -click in oder to control DID system. Finally, experimental results showed the performance of 93% command recognition rate which is enough to confirm the possible application to commercial products.

Hand Rehabilitation System Using a Hand Motion Recognition Device (모션인식 디바이스를 이용한 수부재활치료 시스템)

  • Hwang, Je-Seung;Kim, Min-Jin;Moon, Mi-Kyeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.8
    • /
    • pp.129-137
    • /
    • 2014
  • The patients who have illness of hand and upper limb should be received rehabilitation treatment to recover such illness. The rehabilitation treatments is a treatments designed to facilitate the process of recovery from injury, illness, or disease to as normal a condition as possible. This should be done continuously and repeatedly. In this paper, we describe hand-rehabilitation system which provides a treatment method improving and recovering the function of injured hands. Expecially, this system is using a leap motion device which can easily and properly identify and trace a hand motion and provide six treatment patterns for hand rehabilitation. By using this system, the patients can do rehabilitation treatment easily and continuously in their daily life and in result, the achievement of treatment will be improved.

Hand Tracking based on CamShift using Motion History Image (운동 히스토리 영상을 활용한 CamShift 기반 손 추적 기법)

  • Gil, Jong In;Kim, Mina;Whang, Whankyu;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.22 no.2
    • /
    • pp.182-192
    • /
    • 2017
  • In this paper, we propose hand tracking system combined with color and motion information. Most of hand detection and tracking systems are performed by modeling skin color. However, in this approach, since it is highly influenced by light or surrounding objects, accurate values cannot be derived constantly. Also, depending on the skin color, hand tracking may be interrupted by not only the hand but also the background with a color similar to that of the face and skin. Therefore, we design the hand tracking that can effectively track a hand by using motion history image(MHI) and combining it with CamShift. The proposed system is implemented based on C/C++, and the experiments proved that the proposed method shows stable and excellent performance.

A new study on hand gesture recognition algorithm using leap motion system (Leap Motion 시스템을 이용한 손동작 인식기반 제어 인터페이스 기술 연구)

  • Nam, Jae-Hyun;Yang, Seung-Hun;Hu, Woong;Kim, Byung-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.11
    • /
    • pp.1263-1269
    • /
    • 2014
  • As rapid development of new hardware control interface technology, new concepts have been being proposed and emerged. In this paper, a new approach based on leap motion system is proposed. While we employ a position information from sensor, the hand gesture recognition is suggested with the pre-defined patterns. To do this, we design a recognition algorithm with hand gesture and finger patterns. We apply the proposed scheme to 3-dimensional avatar controling and editing software tool for making animation in the cyber space as a representative application. This proposed algorithm can be used to control computer systems in medical treatment, game, education and other various areas.

Reconstructing individual hand models from motion capture data

  • Endo, Yui;Tada, Mitsunori;Mochimaru, Masaaki
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • In this paper, we propose a new method of reconstructing the hand models for individuals, which include the link structure models, the homologous skin surface models and the homologous tetrahedral mesh models in a reference posture. As for the link structure model, the local coordinate system related to each link consists of the joint rotation center and the axes of joint rotation, which can be estimated based on the trajectories of optimal markers on the relative skin surface region of the subject obtained from the motion capture system. The skin surface model is defined as a three-dimensional triangular mesh, obtained by deforming a template mesh so as to fit the landmark vertices to the relative marker positions obtained motion capture system. In this process, anatomical dimensions for the subject, manually measured by a caliper, are also used as the deformation constraints.

A Measurement System for 3D Hand-Drawn Gesture with a PHANToMTM Device

  • Ko, Seong-Young;Bang, Won-Chul;Kim, Sang-Youn
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.347-358
    • /
    • 2010
  • This paper presents a measurement system for 3D hand-drawn gesture motion. Many pen-type input devices with Inertial Measurement Units (IMU) have been developed to estimate 3D hand-drawn gesture using the measured acceleration and/or the angular velocity of the device. The crucial procedure in developing these devices is to measure and to analyze their motion or trajectory. In order to verify the trajectory estimated by an IMU-based input device, it is necessary to compare the estimated trajectory to the real trajectory. For measuring the real trajectory of the pen-type device, a PHANToMTM haptic device is utilized because it allows us to measure the 3D motion of the object in real-time. Even though the PHANToMTM measures the position of the hand gesture well, poor initialization may produce a large amount of error. Therefore, this paper proposes a calibration method which can minimize measurement errors.

Design and Analysis of a Wrist Rotation Module Prototype for Partial Hand Amputees: Effects on Upper Limb Movement (부분 손 절단자를 위한 프로토 타입의 손목 회전 모듈 디자인 제안과 상지 움직임의 영향 분석)

  • Seoyoung Choi;Wonwoo Cho;Keehoon Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.367-375
    • /
    • 2023
  • Most partial hand amputees experience limited wrist movement, which hinders the efficient functioning of upper limb, affecting hand-to-use coordination and the usability of the prosthetic hand. This limitation can lead to secondary musculoskeletal issues due to repetitive compensatory movement patterns. However, current partial hand prosthetic lack rotational wrist movement due to challenges in accommodating various hand shapes and limited space. In our study, we proposed a prosthetic hand with a wrist rotation module for partial hand amputees, aiming to reduce compensatory movement. To validate the proposed wrist rotation module, we conducted motion analysis during reach-to-grasp task. Furthermore, during the Jebsen-Taylor hand function test, we evaluated both the effect on upper limb movement and the usability of the prosthetic hand, comparing configurations with and without the wrist rotation module. The results showed that the prosthetic hand equipped with rotational wrist movements reduces compensatory movements and promotes efficient upper limb movement patterns. This finding highlights the value of incorporating a wrist rotation module in prosthetic hands to improve upper limb movement for partial hand amputees.

Brain Activation During the Wrist Movement Using Symmetrical Upper Limb Motion Trainer (대칭형 상지 운동기구를 이용한 손목 운동 시 뇌 활성도 패턴)

  • 태기식;김사엽;송성재;이소영;박기영;손철호;김영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1303-1306
    • /
    • 2004
  • We developed a symmetrical upper limb motion trainer for chronic hemiparetic subjects. This trainer enabled the practice of a forearm pronatio $n^ination and wrist flexion/extension. In this study, we have used functional magnetic resonance imaging(fMRI) with the developed symmetrical upper limb motion device, to compare brain activation patterns elicited by flexion/extension wrist movements of control and hemiparetic subject group. In control group, contralateral somatosensory cortex(SMC) and bilateral cerebellum were activated by dominant hand movement(Task 1), while bilateral movements by dominant hand(Task 2) activated the SMC in both cerebral hemispheres and ipsilateral cerebellum. However, in hemiparetic subject group, contralateral supplymentary motor area(SMA) was activated by unaffected hand movement(Task 1), while the activation of bilateral movements by unaffected hand(Task 2) showed only SMA in the undamaged hemisphere. This study, demonstrating the ability to accurately measure activation in both sensory and motor cortex, is currently being extended to patients in clinical applications such as the recovery of motor function after stroke.ke.

  • PDF

Soft Sign Language Expression Method of 3D Avatar (3D 아바타의 자연스러운 수화 동작 표현 방법)

  • Oh, Young-Joon;Jang, Hyo-Young;Jung, Jin-Woo;Park, Kwang-Hyun;Kim, Dae-Jin;Bien, Zeung-Nam
    • The KIPS Transactions:PartB
    • /
    • v.14B no.2
    • /
    • pp.107-118
    • /
    • 2007
  • This paper proposes a 3D avatar which expresses sign language in a very using lips, facial expression, complexion, pupil motion and body motion as well as hand shape, Hand posture and hand motion to overcome the limitation of conventional sign language avatars from a deaf's viewpoint. To describe motion data of hand and other body components structurally and enhance the performance of databases, we introduce the concept of a hyper sign sentence. We show the superiority of the developed system by a usability test through a questionnaire survey.