DOI QR코드

DOI QR Code

부분 손 절단자를 위한 프로토 타입의 손목 회전 모듈 디자인 제안과 상지 움직임의 영향 분석

Design and Analysis of a Wrist Rotation Module Prototype for Partial Hand Amputees: Effects on Upper Limb Movement

  • Seoyoung Choi (POSTECH) ;
  • Wonwoo Cho (Hyundai Rotem Company) ;
  • Keehoon Kim (Mechanical Engineering, POSTECH and Institute for Convergence Research and Education in Advanced Technology, Yonsei University)
  • 투고 : 2023.08.14
  • 심사 : 2023.11.16
  • 발행 : 2023.11.30

초록

Most partial hand amputees experience limited wrist movement, which hinders the efficient functioning of upper limb, affecting hand-to-use coordination and the usability of the prosthetic hand. This limitation can lead to secondary musculoskeletal issues due to repetitive compensatory movement patterns. However, current partial hand prosthetic lack rotational wrist movement due to challenges in accommodating various hand shapes and limited space. In our study, we proposed a prosthetic hand with a wrist rotation module for partial hand amputees, aiming to reduce compensatory movement. To validate the proposed wrist rotation module, we conducted motion analysis during reach-to-grasp task. Furthermore, during the Jebsen-Taylor hand function test, we evaluated both the effect on upper limb movement and the usability of the prosthetic hand, comparing configurations with and without the wrist rotation module. The results showed that the prosthetic hand equipped with rotational wrist movements reduces compensatory movements and promotes efficient upper limb movement patterns. This finding highlights the value of incorporating a wrist rotation module in prosthetic hands to improve upper limb movement for partial hand amputees.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.2022M3C1A3081359)

참고문헌

  1. A. M. Giladi and K. C. Chuang, "Surgical Principles and perspectives on upper extremity amputations," Prosthetic restoration and rehabilitation of the upper and lower extremity, 2013, DOI: 10.1891/9781617051142.0012. 
  2. D. A. Neumann, 2016, Oct., Kinesiology of the musculoskeletal system, (3rd ed.), [Online], https://shop.elsevier.com/books/kinesiology-of-the-musculoskeletal-system/neumann/978-0-323-28753-1. 
  3. K. Ziegler-Graham, E. J. MacKenzie, P. L. Ephraim, T. G. Travison, R. Brookmeyer, "Estimating the prevalence of limb loss in the United States: 2005 to 2050," Archives of physical medicine and rehabilitation, vol. 89, no. 3, pp. 422-429, Mar., 2008, DOI: 10.1016/j.apmr.2007.11.005. 
  4. B. Maat, G. Smit, D. Plettenburg, and P. Breedveld, "Passive prosthetic hands and tools: A literature review," Prosthetics and orthotics international, vol. 42, no. 1, pp. 66-74, Feb., 2018, DOI: 10.1177/0309364617691622. 
  5. F. Cordella, A. L. Ciancio, R. Sacchetti, A. Davalli, A. G. Cutti, E. Guglielmelli, and L. Zollo, "Literature review on needs of upper limb prosthesis users," Frontiers in neuroscience, vol. 10, May, 2016, DOI: 10.3389/fnins.2016.00209. 
  6. N. Dechev, W. L. Cleghorn, and S. Naumann, "Multiple finger, passive adaptive grasp prosthetic hand," Mechanism and machine theory, vol. 36, no. 10, pp. 1157-1173, Oct., 2001, DOI: 10.1016/S0094-114X(01)00035-0. 
  7. B. Massa, S. Roccella, M. C. Carrozza, and P. Dario, "Design and development of an underactuated prosthetic hand," Proceedings 2002 IEEE international conference on robotics and automation (Cat No 02CH37292), Washington, DC, USA, pp. 3374-3379, 2002, DOI: 10.1109/ROBOT.2002.1014232. 
  8. R. Doshi, C. Yeh, and M. LeBlanc, "The design and development of a gloveless endoskeletal prosthetic hand," Journal of rehabilitation research and development, vol. 35, no. 4, pp. 388-395, Oct., 1998, [Online], https://pubmed.ncbi.nl -m.nih.gov/10220216/.  10220216/
  9. A. Kargov, C. Pylatiuk, R. Oberle, H. Klosek, T. Werner, W. Roessler, and S. Schulz, "Development of a multifunctional cosmetic prosthetic hand," 2007 IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, Netherlands, pp. 550-553, 2007, DOI: 10.1109/ICORR.2007.4428479. 
  10. C. Cipriani, F. Zaccone, S. Micera, and M. C. Carrozza, "On the shared control of an EMG-controlled prosthetic hand: analysis of user-prosthesis interaction," IEEE Transactions on Robotics, vol. 24, no. 1, pp. 170-184, Feb., 2008, DOI: 10.1109/TRO.2007.910708. 
  11. R. Boostani and M. H. Moradi, "Evaluation of the forearm EMG signal features for the control of a prosthetic hand," Physiological measurement, vol. 24, no. 2, Mar., 2003, DOI: 10.1088/0967-3334/24/2/307. 
  12. P. Geethanjali, "Myoelectric control of prosthetic hands: state-of-the-art review," Medical Devices: Evidence and Research, vol. 9, no. 1, pp. 247-255, Jul., 2016, DOI: 10.2147/MDER.S91102. 
  13. S. G. Postema, R. M. Bongers, M. A. Brouwers, H. Burger, L. M. Norling-Hermansson, M. F. Reneman, P. U. Dijkstra, and C. K. van der. Sluis, "Musculoskeletal complaints in transverse upper limb reduction deficiency and amputation in the Netherlands: prevalence, predictors, and effect on health," Archives of physical medicine and rehabilitation, vol. 97, no. 7, Jul., 2016, DOI: 10.1016/j.apmr.2016.01.031. 
  14. M. A. Hanley, D. M. Ehde, M. Jensen, J. Czerniecki, D. G. Smith, and L. R. Roboinson, "Chronic pain associated with upper-limb loss," American journal of physical medicine & rehabilitation/Association of Academic Physiatrists, vol. 88, no. 9, Sept., 2009, DOI: 10.1097/PHM.0b013e3181b306ec. 
  15. H. Burger and G. Vidmar, "A survey of overuse problems in patients with acquired or congenital upper limb deficiency," Prosthetics and orthotics international, vol. 40, no. 4, pp. 497-502, Aug., 2016, DOI: 10.1177/0309364615584658. 
  16. F. Montagnani, M. Controzz, and C. Cipriani, "Is it finger or wrist dexterity that is missing in current hand prostheses?," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 23, no. 4, pp. 600-609, Jul., 2015, DOI: 10.1109/TNSRE.2015.2398112. 
  17. H. E. Williams, C. S. Chapman, P. M. Pilarski, A. H. Vette, and J. S. Hebert, "Myoelectric prosthesis users and non-disabled individuals wearing a simulated prosthesis exhibit similar compensatory movement strategies," vol. 18, no. 1, Journal of NeuroEngineering and Rehabilitation, 2021, DOI: 10.1186/s12984-021-00855-x. 
  18. J. ten Kate, G. Smit, and P. Breedveld, "3D-printed upper limb prostheses: a review," Disabil Rehabil Assist Technol, vol. 12, no. 3, pp. 300-314, Feb., 2017, DOI: 10.1080/17483107.2016.1253-117. 
  19. C. Bloomer and K. L. Kontson, "Comparison of DEKA Arm and body-powered upper limb prosthesis joint kinematics," Arch Rehabil Res Clin Transl, vol. 2, no. 3, Sept., 2020, DOI: 10.1016/j.arrct.2020.100057. 
  20. N. M. Bajaj, A. J. Spiers, and A. M. Dollar, "State of the art in artificial wrists: A review of prosthetic and robotic wrist design," IEEE Transactions on Robotics, vol. 35, no. 1, pp. 261-277, Feb., 2019, DOI: 10.1109/TRO.2018.2865890. 
  21. G.-C. Jeong, Y. Kim, W. Choi, G. Gu, H.-J. Lee, M. B. Hong, and K. Kim, "On the design of a novel underactuated robotic finger prosthesis for partial hand amputation," 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, pp. 861-867, 2019, DOI: 10.1109/ICORR.2019.8779553. 
  22. S. Christensen and S. Bai, "A novel shoulder mechanism with a double parallelogram linkage for upper-body exoskeletons," Wearable Robotics: Challenges and Trends: Proceedings of the 2nd International Symposium on Wearable Robotics, vol. 16, pp. 51-56, Oct., 2016, DOI: 10.1007/978-3-319-46532-6_9. 
  23. K. L. Kontson, S. Wang, S. Barovsky, C. Bloomer, L. Wozniczka, and E. F. Civillico, "Assessing kinematic variability during performance of Jebsen-Taylor hand function test," Journal of Hand Therapy, vol. 33, no. 1, pp. 34-44, Jan., 2020, DOI: 10.1016/j.jht.2018.10.002. 
  24. A. J. Spiers, Y. Gloumakov, and A. M. Dollar, "Examining the impact of wrist mobility on reaching motion compensation across a discretely sampled workspace," 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede, Netherlands, pp. 819-826, 2018, DOI: 10.1109/BIOROB.2018.8487871.