• Title/Summary/Keyword: han river watershed

Search Result 316, Processing Time 0.037 seconds

Determination of Design Width for Medium Streams in the Han River Basin (한강유역의 중소하천에 대한 계획하폭 산정)

  • Jeon, Se-Jin;An, Tae-Jin;Park, Jeong-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.675-684
    • /
    • 1998
  • This paper presents the empirical formulas for determining the design-width for medium rivers in the Han river basin. The design flood, the watershed ares, and the channel slope of 216 medium rivers in the Han river basin are collected. the design width formulas are then determined by 1) the least squares (LS) method, 2)the least median squares (LMS) method, and 3) the reweighted least squares method based on the LMS (RLS). The six types of formulas are considered to determine the acceptable type for medium streams in the Han river basin. The root mean squared errors (RMSE), the absolute mean (AME) errors, and the mean errors (ME) are computed to test the formulas derived by three regression methods. It si found that the equation related stream width to the watershed area and the channel slope is acceptable for determining the design width for medium streams in the Han river basin. It is expected that the equations proposed by this study be used an index for determining the design-width for medium streams in the Han river basin.

  • PDF

An Estimation of Flood Quantiles at Ungauged Locations by Index Flood Frequency Curves (지표홍수 빈도곡선의 개발에 의한 미 계측지점의 확률 홍수량 추정)

  • Yoon, Yong-Nam;Shin, Chang-Kun;Jang, Su-Hyung
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • The study shows the possible use of the index flood frequency curves for an estimation of flood quantiles at ungauged locations. Flood frequency analysis were made for the annual maximum flood data series at 9 available stations in the Han river basin. From the flood frquency curve at each station the mean annual flood of 2.33-year return period was determined and the ratios of the flood magnitude of various return period to the mean annual flood at each station were averaged throughout the Han river basin, resulting mean flood ratios of different return periods. A correlation analysis was made between the mean annual flood and physiographic parameters of the watersheds i.e, the watershed area and mean river channel slope, resulting an empirical multiple linear regression equation over the whole Han river basin. For unguaged watershed the flood of a specified return period could be estimated by multiplying the mead flood ratio corresponding the return period with the mean annual flood computed by the empirical formula developed in terms of the watershed area and river channel slope. To verify the applicability of the methodology developed in the present study the floods of various return periods determined for the watershed in the river channel improvement plan formulation by the Ministry of Construction and Transportation(MOCT) were compared with those estimated by the present method. The result proved a resonable agreement up to the watershed area of approximately 2,000k $m^2$. It is suggested that the practice of design flood estimation based on the rainfall-runoff analysis might have to be reevaluated because it involves too much uncertainties in the hydrologic data and rainfall-runoff model calibration.

Applicable Water Quality Indicators for Watershed Management (수질오염총량관리를 위한 관리대상물질)

  • Park, Jae Hong;Oh, Seung Young;Park, Bae Kyoung;Kong, Dong Soo;Rhew, Doug Hee;Jung, Dong Il
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1004-1013
    • /
    • 2006
  • To effective a watershed management, it is necessary to have one or more quantitative measures that can be used to evaluate the relationship between pollutant sources and their impact on water quality. Such measurable quantities are termed indicators. Once an indicator has been selected, a target value for that indicator must be established that seek to distinguish between the impaired and unimpaired state of the waterbody. Various factors will be considered for the selection of an appropriate watershed management indicator. For example, available data, application, management conditions, cost, etc. This paper lists various factors that should be addressed in choosing a watershed management indicators and investigates applicable indicators during watershed management period.

Study of the Non-linear Relationships between Watershed Land Use and Biological Indicators of Streams - The Han River Basin - (유역 토지이용과 하천 생물지수의 비선형적 관계 연구 - 한강권역을 대상으로 -)

  • Park, Se-Rin;Lee, Jong-Won;Park, Yu-Jin;Lee, Sang-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.2
    • /
    • pp.55-67
    • /
    • 2022
  • Land use is a critical factor that affects the hydrological characteristics of watersheds, thereby determining the biological condition of streams. This study analyzes the effects of land uses in the watersheds on biological indicators of streams across the Han River basin using a linear model (LM) and generalized additive model (GAM). LULC and biological monitoring data of streams were obtained from the Korean Ministry of Environment. The proportions of urban, agricultural, and forest areas in the watersheds were regressed to the three biological indicators, including diatom, benthic macroinvertebrate, and fish of streams. The estimated LM and GAM models for the biological indicators were then compared, using regression determination R2 and AIC values. The results revealed that GAM models performed better than the LM models in explaining the variances of biological indicators of streams, indicating the non-linear relationships between biological indicators and land uses in watersheds. Also, the results suggested that the indicator of macroinvertebrates was the most sensitive indicator to land uses in watersheds. Although non-linear relationships between watershed land uses and biological indicators of streams could vary among biological indicators, it was consistent that streams' biological integrity significantly deteriorated by a relatively low percentage of urban areas. Meanwhile, biological indicators of streams were negatively affected by the relatively high percentage of agricultural areas. The results of this study can be integrated into effective quantitative criteria for the watershed management and land use plans to enhance the biological integrity of streams. In specific, land uses management plans in watersheds may need more close attention to urban land use changes than agricultural land uses to sustain the biological integrity of streams.

Evaluation of Impaired Waterbody and Multivariate Analysis Using Time Series Load Curve -in Jiseok Stream Watershed- (시계열 부하 곡선을 이용한 수체손상 평가 및 다변량 분석 -지석천 유역을 대상으로-)

  • Park, Jinhwan;Kang, Taewoo;Han, Sungwook;Baek, Seunggwon;Kang, Taegu;Yoo, Jechul;Kim, Youngsuk
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.650-660
    • /
    • 2017
  • In this study, pollutant emission characteristics by water damage period analyzed 11 items (water temperature, pH, DO, EC, BOD, COD, TOC, SS, T-N, T-P and flow) with load duration curve, time series load curve and factor analysis for three years (2014-2016). Load duration curve is applied to judge the level of impaired waterbody and estimate impaired level by pollutants such as BOD and T-P in this study depending on variation of stream flow. Water quality standard exceeded the flow of mid-range and low-range by flow condition evaluation using load duration curve. This watershed was influenced by point source more than non-point source. Cumulative excess rate of BOD and T-P kept water quality standard for all seasons (spring, summer, autumn and winter) except BOD 59% in spring. Water quality changes were influenced by pollutants of basic environmental treatment facilities and agricultural areas during spring and summer. Results of factor analysis were classified commonly first factor (BOD, COD, and TOC) and second factor (flow, water temperature and SS). Therefore, effects of artificial pollutants and maintenance water must be controlled seasonally and reduced relative to water damage caused by point pollution sources with effluent standard strengthened in the target watershed.

Drought Frequency Analysis Using Hidden Markov Chain Model and Bivariate Copula Function (Hidden Markov Chain 모형과 이변량 코플라함수를 이용한 가뭄빈도분석)

  • Chun, Si-Young;Kim, Yong-Tak;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.969-979
    • /
    • 2015
  • This study applied a probabilistic-based hidden Markov model (HMM) to better characterize drought patterns. In addition, a copula-based bivariate drought frequency analysis was employed to further investigate return periods of the current drought condition in year 2015. The obtained results revealed that western Kangwon area was generally more vulnerable to drought risk than eastern Kangwon area using the 40-year data. Imjin-river watershed including Cheorwon area was the most vulnerable area in terms of severe drought events. Four stations in Han-river watershed showed a joint return period exceeding 1,000 years associated with the drought duration and severity in 2014-2015. Especially, current drought status in Northern Han-river and Imjin-river watershed is most severe drought exceeding 100-year return period.

Applicability of Impervious Cover Index for Water Environment Management (물 환경관리를 위한 불투수면 지표의 적용성 연구)

  • Choi, Ji-yong;Kim, Byung-ik;Park, Baek-soo;Chung, Eun-sung
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.767-772
    • /
    • 2008
  • Studies regarding the application of the impervious cover rate as a watershed management index have increased in number due to concerns over watershed management. The impervious cover rate is suggested as an index that can manage not only water quality but also water volume and the water ecosystem. This study intends to prove its applicability through the interconnection of the impervious cover rate and the water environment in Korea. Analysis of a selected watershed with reference to impervious cover rates showed that a watershed with an impervious cover rate of over 30% had a direct runoff in excess of 60% of precipitation, while a watershed with an impervious cover rate of 7% had a direct runoff of 39%. Watersheds with higher impervious cover rates were also found to have higher BOD, though different watersheds showed slightly different aspects in connection with BOD. Monitoring of benthic macroinvertebrates showed that species inhabiting clean water appear more frequently in areas with lower impervious cover rates than areas with higher impervious cover rates, and in mainstream areas, relatively larger numbers of species appeared in areas with lower impervious cover rates. This suggests that impervious cover rates can be appropriately used as an index for watershed management, as it effectively represents changes to the water environment.

Temporal and Spatial Analysis of Non-biodegradable Organic Pollutants in the Geumho River System (금호강 수계 난분해성 유기오염물질에 대한 시·공간적 특성 분석)

  • Jung, Kang-Young;Ahn, Jung-Min;Lee, Kyung-Lak;Lee, In-Jung;Yu, Jae-Jeong;Cheon, Se-Uk;Kim, Kyo-Sik;Han, Kun-Yeun
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1343-1362
    • /
    • 2015
  • As a result of analysis based on the observed data for BOD, COD and TOC in order to manage non-biodegradable organics in the Geumho River, COD/BOD ratio was analyzed as the occupying predominance proportion. In this study, the classification(changes in water quality measurement : increase, equal, decrease) and measurement of BOD and COD were analyzed for trends over the past 10 years from 2005 to 2014 in the Geumho River. The Geumho River is expected to need non-biodegradable organics management because BOD was found to be reduced 61.1% and COD was found to be increased 50%. As a result of the analysis of land use, the Geumho-A is a unit watershed area of $921.13km^2$, which is the most common area that is occupied by forests. The Geumho-B is a unit watershed area of $436.8km^2$, which is the area that is highest occupied by agriculture and grass of 24.84%. The Geumho-C is a unit watershed area of $704.56km^2$ accounted for 40.29% of the entire watershed, which is the area that is occupied by urban of 15.12%. Load of non-biodegradable organics, which is not easy biodegradable according to the discharge, appeared to be increased because flow coefficient of COD and TOC at the Geumho-B were estimated larger than 1 value. The management of non-point sources of agricultural land is required because the Geumho-B watershed area occupied by the high proportion of agriculture and field. In this segment it showed to increase the organics that biodegradation is difficult because the ratio of BOD and TOC was decreased rapidly from GR7 to GR8. Thus, countermeasures will be required for this.

Calculation of low flow for estimating TMDL (허용 부하량 산정을 위한 저수유량 산정 방안)

  • Jung, Yoon-Min;Kwon, Jae-Hyuk;Kang, Sang-Hyuk
    • Spatial Information Research
    • /
    • v.17 no.2
    • /
    • pp.223-239
    • /
    • 2009
  • The low fow analysis for small-mid sized river basins is very difficult because of insufficient flow data or ungauged basins. The objective of this study is to suggest effective method of low flow using area function method for calculating Total Maximum Daily Loads (TMDL) by considering environmental carrying capacity. Two watersheds which are Juchon watershed having $606km^2$ areas and ungauged watershed having $4,551km^2$ areas were selected for this study. As a result of application, the low flow in the downstream of Juchon River and the Han River after confluence of Okdong River were $1.9m^3/s$ and $20.7m^3/s$, respectively. Then we consider the target BOD of 1.0-1.2mg/l in Youngwol prefecture, the TDML was estimated 164-197kg/day and 1,788-2,146kg/day, respectively. This approach will useful for estimating TDML to insufficient watershed of flow data and ungauged watershed of flow data.

  • PDF