• Title/Summary/Keyword: hamster lung

Search Result 148, Processing Time 0.027 seconds

A Chromosome Aberration Test of HMC05 on Cultured Chinese Hamster Lung Cells (HMC05의 배양 Chinese Hamster Lung 세포를 이용한 염색체이상 시험)

  • Shin, Heung-Mook
    • The Korea Journal of Herbology
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Objectives : We investigated genetic toxicity of HMCO5 in relation to chromosome aberration test on Cultured Chinese Hamster Lung (CHL) in the presence and absence of S-9 mix. Methods : Experimental groups were divided into two groups: with S-9mix (+S) or without S-9 mix (-S). -S group was also divided 2 series by treatment hours (6 hr: 6-S; or 24 hr; 24-S). Each group treated with vehicle only (complete culture medium), HMCO5 (1,250, 2,500, $5,000\;{\mu}g/ml$), and cyclophosphamide monohydrate (CPA) and ethylmethanesulfonate (EMS), respectively. Results : HMC05 did not show any aberrant metaphase. However, there were significant (p < 0.01) aberrant metaphases with CPA in S+ and with EMS in S-. Conclusions : These results indicate that HMC05 formula does not show any toxicity in chromosome aberration test.

A STUDY ON THE CLASTOGENICITY OF TRICHOTHECENE MYCOTOXINS IN CHINESE HAMSTER LUNG CELLS

  • Ryu, Jae-Chun;Chang, Il-Moo
    • Toxicological Research
    • /
    • v.9 no.1
    • /
    • pp.13-21
    • /
    • 1993
  • The chromosomal aberration of the trichothecene mycotoxins such as T-2 toxin (T-2), HT-2 toxin (HT-2), nivalenol (NIV) and deoxynivalenol (DON) which are one of the most important food borne contaminants produced by Fusarium species fungi, was investigated in the chinese hamster lung cells. These trichothecene mycotoxins showed high cytotoxicity in order of T-2, HT-2, NIV, and DON to the chinese hamster lung cells. Nevertheless high cytotoxicity of these trichothecene mycotoxins, no clastogenicity of T-2 and HT-2 in the range of 0.01-0.0025 ng/ml, of NIV in that of 0.3-0.075ng/ml, and of DON in that of 1.0-0.25 ng/ml was observed in both with and without metabolic activation system.

  • PDF

Passage and Adaptation of Maaji Virus in Hamster (Maaji Virus의 Hamster 계대 및 적응)

  • Kim, Yun-Cheol;Paik, Woo-Hyun;Lee, Pyung-Woo
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.1
    • /
    • pp.67-76
    • /
    • 1996
  • The methods that make Hantavirus grow consist of inoculation into the experimental animals and cultured cells. The cultured cells, such as Vero-E6 and A549 cells, have been usually used for isolation of the virus and the animals, such as mice and rats, are used for large scale preparation of the virus so far. Furthermore, the cell can be used to maintain the virus and assay the infectivity and the animals can be used for the experiment of viral pathogenicity and challenge for assessment of vaccine. Apodemus mice, the own natural host of the virus, has been used for challenge test of Hantaan virus. However it has been pointed out to difficult handling and breeding the animal in laboratory. Therefore, we attempted to establish a new animal model for challenge test at the time of isolation of Maaji virus which is a new hantavirus similar but distinct to Hantaan virus. In suckling hamster, the titer of Maaji virus and the lethality to mice of the virus were increased gradually in the titer and lethality through passage by intracerebral (IC) inoculation. We tried to re-adapt this brain virus to lung of weanling hamster. The brain passaged virus was inoculated into weanling hamster intramuscularly. Again, the titer of the virus in lung was also increased by continuous passage of this virus. This facts could regarded as adaptation to new environment in which the virus proliferates. To identity the virus passaged in hamster with Maaji virus, both of the virus passaged in hamster brain and lung were compared with Maaji virus (MAA-I) and Hantaan virus (HTN 76-118) by means of restriction fragment length polymorphism (RFLP) and slingle strand conformation polymophism (SSCP). As a result, we conclude that Maaji virus could be adapted successfully to weanling hamster through this passage strategy. Utilizing this adapted Maaji virus strain, hamster model is able to be used for challenge test in hantaviral vaccinology and further experiments utilizing hamster system as a rather available and convenient lab animal are expected.

  • PDF

Evaluation of the Genetic Toxicity of Synthetic Chemicals (IV) - in vitro Chromosomal Aberration Assay with 18 Chemicals in Chinese Hamster Lung Cells -

  • Ryu, Jae-Chun;Kim, Kyung-Ran;Kim, Youn-Jung
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.3
    • /
    • pp.149-156
    • /
    • 2002
  • The detection of many synthetic chemicals used in industry that may pose a genetic hazard in our environment is of great concern at present. Since these substances are not limited to the original products, and enter the environment, they have become widespread environmental pollutants, thus leading to a variety of chemicals that possibly threaten the public health. In this respect, to regulate and to evaluate the chemical hazard will be important to environment and human health. The clastogenicity of 18 synthetic chemicals was evaluated in Chinese hamster lung fibroblast cells in vitro. 4-Chloro-3,5-dimethyl phenol (CAS No. 88-04-0) induced chromosomal aberrations with significance at the concentration of 15.7 $\mu\textrm{g}$/$m\ell$ both in the presence and absence of metabolic activation system. Phenoxybenzene (CAS No. 101-84-8) which is one of the most cytotoxic chemical among 18 chemicals tested revealed no clastogenicity in the range of 0.11-0.43 $\mu\textrm{g}$/$m\ell$ both in the presence and absence of metabolic activation system. From the results of chromosomal aberration assay with 18 synthetic chemicals in Chinese hamster lung cells in vitro, 4-chloro-3,5-dimethyl phenol (CAS No. 88-04-0) revealed weak positive clastogenic results in this study.

  • PDF

The Chromosomal Aberration Test of Wild Ginseng Culture Extract in Chinese Hamster Lung Cell (산삼배양추출물의 배양 Chinese Hamster Lung 세포를 이용한 염색체이상시험)

  • Song Si-Whan;Yang Deok Chun;Choung Se Young
    • Toxicological Research
    • /
    • v.21 no.1
    • /
    • pp.57-62
    • /
    • 2005
  • To investigate the mutant induction of wild ginseng culture extract, we performed chromosomal aberration assay with chinese hamster lung cell in vitro. The test concentration of the extract was decided for the standard with the 50% suppression of cell propagation in the cell. The concentrations for the chromosome test were 1,250, 2,500 and 5,000 ㎍/ml with metabolic activation (+S, 6 hours treatment), 1,100, 2,200 and 4,400 ㎍/ml without metabolic activation (-S, 6 hours treatment) 800, 1,600 and 3,200 ㎍/ml without metabolic activation (-S, 24 hours treatment). No significant increase in chromosome aberrations was observed at any of these concentrations both in the absence and presence of metabolic activation system. Cyclophosphamide monohydrate (CPA) and ethylmethanesulfonate (EMS) caused a significant increase in chromosome aberration. These results may be concluded that wild ginseng culture extract is not capable of inducing chromosome aberration in cultured chinese hamster lung cell regardless of metabolic activation and genotoxicity of that is negative under the present experimental condition.

Evaluation of the Genetic Toxicity of Synthetic Chemicals (XIV)-in vitro Chromosomal Aberration Assay with 11 Chemicals in Chinese Hamster Lung Cells

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.2
    • /
    • pp.89-96
    • /
    • 2006
  • The detection of many synthetic chemicals used in industry that may pose a genetic hazard in our environment is of great concern at present. Since these substances are not limited to the original products, and enter the environment, they have become widespread environmental pollutants, thus leading to a variety of chemicals that possibly threaten the public health. In this respect, to regulate and to evaluate the chemical hazard will be important to environment and human health. The clastogenicity of 11 synthetic chemicals was evaluated in Chinese hamster lung fibroblast cells in vitro. 1-Chloro-3-bromopropane CAS No. 109-70-6) induced chromosomal aberrations with significance at the concentration of $185.0\;{\mu}g/mL\;and\;1,600\;{\mu}g/mL$ both in the presence and absence of metabolic activation system, respectively. Triphenyl phosphite (CAS No. 101-02-0), which is one of the most cytotoxic chemical among 11 chemicals tested revealed no clastogenicity in the range of $95.0-4.9\;{\mu}g/mL$ both in the presence and absence of metabolic activation system. From the results of chromosomal aberration assay with 11 synthetic chemicals in Chinese hamster lung cells in vitro, 1-chloro-3-bromopropane revealed a positive clastogenic result in this study.

Chromosomalanomaly test of Sipjeondaebo-tang extract using the Chiness hamster lung (Chiness hamster lung cell(CHL)에서 십전대보탕 염색체 이상 시험)

  • Ma, Jin-Yeul;Huang, Dae-Sun;Lee, Nam-Hun;Ha, Hye-Kyung;Yu, Young-Beob;Shin, Hyun-Kyoo
    • Herbal Formula Science
    • /
    • v.16 no.2
    • /
    • pp.145-153
    • /
    • 2008
  • Objectives : This study was to assessment the toxicity of Sipjeondaebo-tang(Shiquan dabu-decoction) by Chromosomalanomaly test. Methods : Sipjeondaebo-tang(Shiquan dabu-decoction) water-extract in vivo Chromosomalanomaly test was performed using chiness hamster lung cell line. Results : Sipjeondaebo-tang water extract was negative in Chromosomalanomaly test at the doses of 0, 625, 1250 and $2500{\mu}g/m\ell$ at 6h and 24h.(S9- fraction). Chromosomalanomaly test(S+fraction) was also negative at the doses of 0, 1250, 2500 and $5000{\mu}g/m\ell$. Conclusions : It was concluded that Sipjeondaebo-tang extract did not induce Chromosomalanomaly in the chiness hamster lung cell.

  • PDF

Chromosomal Aberration Assay of Taxol and 10-deacetyI baccatin III in Chinese Hamster Lung Cells In Vilro

  • Ryu, Jae-Chun;Kim, Kyung-Ran;Ryu, Eun-Kyung;Kim, Hyun-Joo;Kwon, Oh-Seung;Song, Choong-Eui;Mar, Woong-Chon;Chang, Il-Moo
    • Environmental Mutagens and Carcinogens
    • /
    • v.16 no.1
    • /
    • pp.6-12
    • /
    • 1996
  • To investigate the clastogenicity of taxol and its precursor, 10-aleacetyl baccatin III, we performed chromosomal aberration assay with chinese hamster lung cells in vitro. The IC$_{50}$ values of taxol and 10-deacetyl baccatin III were determined as $1/16 \times 10^{-4}$ M (5.34 $\mu$g/ml) and $1 \times 10^{-2}$ M (560 $\mu$g/ml) in MTT assay, respectively. It means that the cytotoxicity of taxol revealed 100 times more cytotoxic than 10-deacetyl baccatin III in chinese hamster lung cell line. Nevertheless the strong positive genetic toxicity of taxol in the bone marrow micronucleus assay in vivo which was recently reported, we observed weak positive clastogenicity of taxoi only in the absence of metabolic activation system in the concentration ranges used in this experiment. Moreover, to clarify the involvement of metabolic fate of taxol because of its strong positive result in vivo, 10-deacetyl baccatin III which is a precursor in taxol synthesis, also subjected in chromosomal aberration assay in vitro. However, we observed no clastogenicity of 10-deacetyl baccatin III in this experiment. From above results, it was suggested that the esterification at C-13 appears to be relative for its genetic toxicity in chromosome aberration using chinese hamster lung cell in vitro.

  • PDF

Inositol(1,4,5)triphosphate 3-Kinase의 유전자 재조합과 CCL39 Hamster Lung Fibroblasts에서 발현

  • 김재웅;최관용
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.2
    • /
    • pp.123-136
    • /
    • 1996
  • IPSKCDNA gene(1.8 kbp) encoding rat brain IP3K enzyme contained Not I restric site in open reading frame. The Not I sequence, GCGGCCGC, was converted to GCAGCCGC by site-directed mutagenesis. The mutated IP3KcDNA was digested with EcoR I and ligated with EcoR I-restricted psp72·Not2 vector. The resulting psp72 · Not2-IP3KCDNA was digested with the Not I restriction enzyme and then subcloned into the Not I -digested PZIP · NeoSV(X) mammalian expression vector. The PZIP · NeoSV(X) -IPSKCDNA was transfected into CCL39 hamster lung fibroblast cells. The efficiency of the expressed IPSKCDNA gene was significantly higher than expected generally, not only a mean 5-fold increase in the amount of enzyme, but also 16-fold increase in enzyme activity from tractsfected CCL39 cells by the method of Western blot using anti-lP3K antibodies. Both distribution of IPSK in various rat tissues and biochemical properties were discussed.

  • PDF

Genotoxic Evaluation of Surfactin C in Chinese Hamster Lung Cell Line

  • Lim, Jong-Hwan;Song, In-Bae;Park, Byung-Kwon;Kim, Myoung-Seok;Hwang, Youn-Hwan;Yun, Hyo-In
    • Toxicological Research
    • /
    • v.25 no.1
    • /
    • pp.47-50
    • /
    • 2009
  • To investigate the mutation inducibility of surfactin C, we performed the chromosome aberration assay with Chinese hamster lung cells in vitro. The colorimetric MTT screening assay was carried out to determine the cytotoxicity index ($IC_{50}$) of surfactin C. The $IC_{50}$ value was $125{\mu}g/ml$. For the chromosome aberration test of surfactin C, the maximum concentration was employed as $125{\mu}g/ml$, followed by 62.5 and $31.25{\mu}g/ml$ for the lower concentrations, with or without metabolic activation (S9). Cyclophosphamide and mitomycin C were used as positive controls in the presence and absence of S9 metabolic activation, respectively. These results showed that surfactin C was not capable of inducing chromosome aberration, as measured by the chromosome aberration test using Chinese hamster lung cell line. There is no evidence for surfactin C to have a genotoxic potential.