• Title/Summary/Keyword: hamiltonian

Search Result 268, Processing Time 0.032 seconds

Steering the Dynamics within Reduced Space through Quantum Learning Control

  • Kim, Young-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.744-750
    • /
    • 2003
  • In quantum dynamics of many-body systems, to identify the Hamiltonian becomes more difficult very rapidly as the number of degrees of freedom increases. In order to simplify the dynamics and to deduce dynamically relevant Hamiltonian information, it is desirable to control the dynamics to lie within a reduced space. With a judicious choice for the cost functional, the closed loop optimal control experiments can be manipulated efficiently to steer the dynamics to lie within a subspace of the system eigenstates without requiring any prior detailed knowledge about the system Hamiltonian. The procedure is simulated for optimally controlled population transfer experiments in the system of two degrees of freedom. To show the feasibility of steering the dynamics to lie in a specified subspace, the learning algorithms guiding the dynamics are presented along with frequency filtering. The results demonstrate that the optimal control fields derive the system to the desired target state through the desired subspace.

Accurate analytical solution for nonlinear free vibration of beams

  • Bayat, M.;Pakar, I.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.3
    • /
    • pp.337-347
    • /
    • 2012
  • In this study, Hamiltonian Approach (HA) is applied to analysis the nonlinear free vibration of beams. Two well-known examples are illustrated to show the efficiency of this method. One of them deals with the Nonlinear vibration of an electrostatically actuated microbeam and the other is the nonlinear vibrations of tapered beams. This new approach prepares us to achieve the beam's natural frequencies and mode shapes easily and a rapidly convergent sequence is obtained during the solution. The effects of the small parameters on the frequency of the beams are discussed. Some comparisons are conducted between the results obtained by the Hamiltonian Approach (HA) and numerical solutions using to illustrate the effectiveness and convenience of the proposed methods.

THE NUMBER OF PANCYCLIC ARCS CONTAINED IN A HAMILTONIAN CYCLE OF A TOURNAMENT

  • Surmacs, Michel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1649-1654
    • /
    • 2014
  • A tournament T is an orientation of a complete graph and an arc in T is called pancyclic if it is contained in a cycle of length l for all $3{\leq}l{\leq}n$, where n is the cardinality of the vertex set of T. In 1994, Moon [5] introduced the graph parameter h(T) as the maximum number of pancyclic arcs contained in the same Hamiltonian cycle of T and showed that $h(T){\geq}3$ for all strong tournaments with $n{\geq}3$. Havet [4] later conjectured that $h(T){\geq}2k+1$ for all k-strong tournaments and proved the case k = 2. In 2005, Yeo [7] gave the lower bound $h(T){\geq}\frac{k+5}{2}$ for all k-strong tournaments T. In this note, we will improve his bound to $h(T){\geq}\frac{2k+7}{3}$.

Explicit time integration algorithm for fully flexible cell simulation (외연적 적분 기법을 적용한 Fully Flexible Cell 분자 동영학 시뮬레이션)

  • Park Shi-Dong;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.389-394
    • /
    • 2006
  • Fully flexible cell preserves Hamiltonian in structure, so the symplectic time integrator is applied to the equations of motion. Primarily, generalized leapfrog time integration (GLF) is applicable, but the equations of motion by GLF have some of implicit formulas. The implicit formulas give rise to a complicate calculation for coding and need an iteration process. In this paper, the time integration formulas are obtained for the fully flexible cell molecular dynamics simulation by using the splitting time integration. It separates flexible cell Hamiltonian into terms corresponding to each of Hamiltonian term, so the simple and completely explicit recursion formula was obtained. The explicit formulas are easy to implementation for coding and may be reduced the integration time because they are not need iteration process. We are going to compare the resulting splitting time integration with the implicit generalized leapfrog time integration.

  • PDF

An accurate novel method for solving nonlinear mechanical systems

  • Bayat, Mahdi;Pakar, Iman;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.519-530
    • /
    • 2014
  • This paper attempts to investigate the nonlinear dynamic analysis of strong nonlinear problems by proposing a new analytical method called Hamiltonian Approach (HA). Two different cases are studied to show the accuracy and efficiency of the method. This approach prepares us to obtain the nonlinear frequency of the nonlinear systems with the first order of the solution with a high accuracy. Finally, to verify the results we present some comparisons between the results of Hamiltonian approach and numerical solutions using Runge-Kutta's [RK] algorithm. This approach has a powerful concept and the high accuracy, so it can be apply to any conservative nonlinear problems without any limitations.

A Splitting Time Integrator for Fully Flexible Cell Molecular Dynamics (분할 적분 기법을 적용한 N-sigma-T 분자동역학 전산모사)

  • Park, Shi-Dong;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.826-832
    • /
    • 2007
  • Fully flexible cell preserves Hamiltonian in structure so that the symplectic time integrator is applicable to the equations of motion. In the direct formulation of fully flexible cell N-Sigma-T ensemble, a generalized leapfrog time integration (GLF) is applicable for fully flexible cell simulation, but the equations of motion by GLF has structure of implicit algorithm. In this paper, the time integration formula is derived for the fully flexible cell molecular dynamics simulation by using the splitting time integration. It separates flexible cell Hamiltonian into terms corresponding to each of Hamiltonian term. Thus the simple and completely explicit recursion formula was obtained. We compare the performance and the result of present splitting time integration with those of the implicit generalized leapfrog time integration.

PANCYCLIC ARCS IN HAMILTONIAN CYCLES OF HYPERTOURNAMENTS

  • Guo, Yubao;Surmacs, Michel
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1141-1154
    • /
    • 2014
  • A k-hypertournament H on n vertices, where $2{\leq}k{\leq}n$, is a pair H = (V,A), where V is the vertex set of H and A is a set of k-tuples of vertices, called arcs, such that for all subsets $S{\subseteq}V$ with |S| = k, A contains exactly one permutation of S as an arc. Recently, Li et al. showed that any strong k-hypertournament H on n vertices, where $3{\leq}k{\leq}n-2$, is vertex-pancyclic, an extension of Moon's theorem for tournaments. In this paper, we prove the following generalization of another of Moon's theorems: If H is a strong k-hypertournament on n vertices, where $3{\leq}k{\leq}n-2$, and C is a Hamiltonian cycle in H, then C contains at least three pancyclic arcs.

Code optimization of DNA computing for Hamiltonian path problem (Hamiltonian Path Problem을 위한 DNA 컴퓨팅의 코드 최적화)

  • 김은경;이상용
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.241-243
    • /
    • 2002
  • DNA 컴퓨팅은 생체 분자들이 갖는 막대한 병렬성을 정보 처리 기술에 적용한 기술이다. Adleman의 DNA 컴퓨팅은 랜덤한 고정길이의 형태로 문제를 표현하기 때문에 해를 찾지 못하거나 시간이 많이 걸리는 단점을 갖고 있다. 본 논문은 DNA 컴퓨팅에 DNA 코딩 방법을 적용하여 DNA 서열을 효율적으로 표현하고 반응횟수 만큼 합성과 분리 과정을 거쳐 최적의 코드를 생성하는 ACO(Algorithm for Code Optimization)를 제안한다. DNA 코딩 방법은 변형된 유전자 알고리즘으로 DNA 기능을 유지하며, 서열의 길이를 줄일 수 있으므로 최적의 서열을 생성할 수 있는 특징을 갖는다. ACO를 NP-complete 문제 중 Hamiltonian path problem에 적용하여 실험한 결과, Adleman의 DNA 컴퓨팅 보다 초기 문제 표현에서 높은 적합도 값을 갖는 서열을 생성했으며, 경로의 변화에도 능동적으로 대처하여 최적의 결과를 빠르게 탐색할 수 있었다.

  • PDF

A Novel Method for Bitrate Control within Macroblocks Using Kalman and FIR Filters

  • Seok, Jin-Wuk;Yoon, Ki-Song;Kim, Bum-Ho;Lee, Jeong-Woo
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.641-644
    • /
    • 2011
  • In this letter, we propose a novel bitrate control, using both Kalman and FIR filters, based on a Hamiltonian analysis with respect to the amount of bits from each macroblock, in an encoding of a general video codec such as H.264/AVC. Since the proposed bitrate control is based on the simple computation of an optimal control method based on the Hamiltonian analysis, it is not necessary to use additional computation, such as a DCT or quantization, to estimate the bits for bitrate control. As a result, the proposed algorithm can be applied to single-pass encoding and can provide sufficient encoding speed with respect to various applications, even those requiring real-time control.

Analytical study on non-natural vibration equations

  • Bayat, Mahmoud;Pakar, Iman
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.671-677
    • /
    • 2017
  • In this paper, two powerful analytical methods called Variational Approach (VA) and Hamiltonian Approach (HA) are used to solve high nonlinear non-Natural vibration problems. The presented approaches are works well for the whole range of amplitude of the oscillator. The first iteration of the approaches leads us to high accurate solution. Numerical results are also presented by using Runge-Kutta's [RK] algorithm. The full comparison between the presented approaches and the numerical ones are shown in figures. The effects of important parameters on the response of nonlinear behavior of the systems are studied completely. Finally, the results show that the Variational Approach and Hamiltonian approach are strong enough to prepare easy analytical solutions.