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THE NUMBER OF PANCYCLIC ARCS CONTAINED IN A

HAMILTONIAN CYCLE OF A TOURNAMENT

Michel Surmacs

Abstract. A tournament T is an orientation of a complete graph and
an arc in T is called pancyclic if it is contained in a cycle of length l

for all 3 ≤ l ≤ n, where n is the cardinality of the vertex set of T . In
1994, Moon [5] introduced the graph parameter h(T ) as the maximum
number of pancyclic arcs contained in the same Hamiltonian cycle of T
and showed that h(T ) ≥ 3 for all strong tournaments with n ≥ 3. Havet
[4] later conjectured that h(T ) ≥ 2k+1 for all k-strong tournaments and

proved the case k = 2. In 2005, Yeo [7] gave the lower bound h(T ) ≥ k+5
2

for all k-strong tournaments T . In this note, we will improve his bound

to h(T ) ≥ 2k+7
3

.

1. Introduction and terminology

We use Bang-Jensen and Gutin [1] for terminology and notation not defined
here. A tournament T is an orientation of a complete graph. We denote by
V (T ) and A(T ) the vertex set and arc set of T , respectively. For convenience,
let n be the cardinality of V (T ). If xy ∈ A(T ), we mostly use the notation
x → y to denote this arc.

Let X be a subset of V (T ). The subdigraph of T induced by X is denoted
by T [X ]. Instead of T [V (T ) \X ], we write T −X (or T − x if X contains only
a single vertex x). For a vertex x ∈ X , the out-neighborhood (in-neighborhood,
respectively) in T [X ] is the set N+

T [X](x) = {y | xy ∈ A(T [X ])} (N−
T [X](x) =

{y | yx ∈ A(T [X ])}, respectively). Instead of N+
T and N−

T we use N+ and N−,

respectively. For a subset Y of X , we define N+
T [X](Y ) =

⋃

x∈Y N+
T [X](x) \ Y

and N−
T [X](Y ) =

⋃

x∈Y N−
T [X](x) \ Y . We call d+

T [X](x) = |N+
T [X](x)| (d+(x),

respectively) the out-degree and d−
T [X](x) (d

−(x), respectively) the in-degree of

a vertex x ∈ X . Also, δ+ = δ+(T ) = min{d+(x) | x ∈ V (T )} is the minimum

out-degree in T .
By a path or a cycle, we mean a directed path or directed cycle. An l-cycle

in T is a cycle of length l. An n-cycle is also referred to as a Hamiltonian cycle.
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An arc e = xy ∈ A(T ) is called an out-arc of the vertex x. Furthermore, it is
called pancyclic in T , if it is contained in an l-cycle for all 3 ≤ l ≤ n.

A strong component H of T is a maximal subdigraph such that for any
x, y ∈ V (H), there is a path from x to y in H and vice versa. If a tournament
T has only one strong component, we call it strongly connected or strong. T

is called k-strong, if T − X is strong for any X ⊆ V (T ) with at most k − 1
vertices.

In 1994, Moon [5] introduced the graph parameter h(T ) as the maximum
number of pancyclic arcs contained in the same Hamiltonian cycle of a tourna-
ment T and proved the next theorem.

Theorem 1.1 ([5]). Let T be a strong tournament on n ≥ 3 vertices. Then

h(T ) ≥ 3.

The subject was studied for k-strong tournaments with k ≥ 2 by Havet [4],
in 2004. With hk(n) defined as

hk(n) := min{h(T ) | T is a k-strong tournament of order n}
(or hk(n) := ∞, respectively, if there is no k-strong tournament of order n), he
gave the following conjecture.

Conjecture 1.2 ([4]). hk(n) ≥ 2k + 1. Given a sufficiently large integer n,

hk(n) = 3k holds.

Furthermore, he proved his lower bound conjecture for k = 2.

Theorem 1.3 ([4]). Let T be a 2-strong tournament. Then

h(T ) ≥ 5.

The best known lower bound for k ≥ 3, prior to this note, is due to Yeo [7],
who showed the following, in 2005.

Theorem 1.4 ([7]). hk(n) ≥ k+5
2 for k ≥ 1.

In this note, we will improve his bound to hk(n) ≥ 2k+7
3 for k ≥ 1.

But first we will give some results on tournaments we will use to prove our
proposition.

2. Preliminaries

We begin with a well-known theorem by Camion [2].

Theorem 2.1 ([2]). A tournament is strong if and only if it has a Hamiltonian

cycle.

Theorem 2.2 ([6]). If e is an arc of a 3-strong tournament, then e is contained

in a Hamiltonian cycle of T .

Lemma 2.3 ([7]). Let T be a 2-strong tournament, containing an arc e = xy,

such that d+(x) ≤ d+(y). Then e is pancyclic in T .
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Theorem 2.4 ([7]). Let T be a 3-strong tournament, containing an arc e = xy,

such that d+(x) = δ+(T ) and d+(y) = min{d+(w) | w ∈ N+(x)}. Then all

out-arcs of x and all out-arcs of y are pancyclic.

Lemma 2.5 ([3]). Let T be a 3-strong tournament, containing an arc e = xy,

such that d+(x) = δ+(T ), d+(y) = min{d+(w) | w ∈ N+(x)} and |{v ∈ V (T ) |
d+(v) = δ+(T )}| ≤ 2. If

A. N+(x) ∩N+(y) 6= ∅ or

B. N+(x) ∩N+(N+(y)) 6= ∅
then there exists a vertex z ∈ N+(x) \ {y}, such that all out-arcs of z are

pancyclic.

Lemma 2.6. Let T be a k-strong tournament and let S be a subset of V (T )
with s = |S| ≤ k− 2. If e is a pancyclic arc in T − S, then e is pancyclic in T .

Proof. Since e is pancyclic in T − S, e is contained in cycles of length l for
all 3 ≤ l ≤ n − s. For n − s + 1 ≤ l ≤ n, let S′ be a subset of S with
|S′| = n − l ≤ n − (n − s + 1) = s − 1 ≤ k − 3. Then T − S′ is 3-strong and
therefore, by Theorem 2.2, e is contained in a Hamiltonian cycle of T − S′,
which is a cycle of length l in T . �

Lemma 2.7. Let T be a k-strong (k ≥ 5) tournament, containing three ver-

tices x0, x1, x2, such that all out-arcs of x0, x1 and x2 are pancyclic. If

T [{x0, x1, x2}] is a 3-cycle and h(T − {x0, x1, x2}) ≥ 2(k−3)+7
3 , then h(T ) ≥

2k+7
3 .

Proof. Without loss of generality, we may assume that C3 = x0x1x2x0 is a

3-cycle in T . As a direct consequence of h(T − {x0, x1, x2}) ≥ 2(k−3)+7
3 , there

is a Hamiltonian cycle CH = v0v1 · · · vn−4v0 of T − {x0, x1, x2} that contains

at least 2(k−3)+7
3 arcs which are pancyclic in T − {x0, x1, x2}. By Lemma 2.6,

these arcs are also pancyclic in T .
Suppose that there are indices i ∈ {0, . . . , n − 4} and j ∈ {0, 1, 2}, such

that vi → xj and xj+2 mod 3 → vi+1 mod n−3. Without loss of generality, we
may assume that i = j = 0 (up to rotation and relabeling of CH and C3).
Then v0x0x1x2v1 · · · vn−4v0 is a Hamiltonian cycle of T that contains at least
2(k−3)+7

3 −1+3 = 2k+7
3 pancyclic arcs, since we lose only the arc v0v1 and gain

3 pancyclic out-arcs of x0, x1 and x2 in comparison to CH .
Suppose now that there are no such indices and let us denote this property

by (⋆). If |N+(vi0 ) ∩ {x0, x1, x2}| = 3 for some index i0 ∈ {0, . . . , n − 4},
we have vi → {x0, x1, x2} for all i ∈ {0, . . . , n − 4}, by (⋆). Hence, T is
not strong, a contradiction. By symmetry, the same contradiction is reached
if |N+(vi0 ) ∩ {x0, x1, x2}| = 0 (i.e., |N−(vi0 ) ∩ {x0, x1, x2}| = 3) for some
index i0 ∈ {0, . . . , n − 4}. It follows that |N+(vi) ∩ {x0, x1, x2}| ∈ {1, 2}
for all i ∈ {0, . . . , n − 4}. Without loss of generality, we may assume that
N+(v0) ∩ {x0, x1, x2} = {x0, x1}. Otherwise, we consider the converse tourna-
ment (where the direction of all arcs is reversed) and/or relabel the vertices x0,
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x1 and x2, respectively. Because of (⋆) and |N+(vi)∩ {x0, x1, x2}| ∈ {1, 2}, we
then have N+(vi) = {x−i mod 3, x1−i mod 3} for all i ∈ {0, . . . , n− 4}.

Suppose that there is an index i ∈ {0, . . . , n− 4}, such that vivi+1 mod n−3

is not pancyclic in T . Without loss of generality, we may assume that i = 0.
Then C = v0x0x1v1 · · · vn−4v0 is a Hamiltonian cycle of T − x2 that contains

at least 2(k−3)+7
3 + 2 = 2k+7

3 pancyclic arcs. We relabel C = w0 . . . wn−2w0.
Then, since T is strong, there is an index j ∈ {0, . . . , n − 2}, such that wj →
x2 → wj+1 mod n−1. Therefore, we can insert x2 into C. Thereby, we lose at
most one pancyclic arc (specifically wjwj+1 mod n−1) of C and gain another
one (the out-arc of x2). Thus, we obtain a Hamiltonian cycle of T that still
contains at least 2k+7

3 pancyclic arcs.
If all arcs of CH are pancyclic, then CH contains n−3 ≥ 2k+1−3 ≥ k+3 ≥

2k+7
3 pancyclic arcs, since T is k-strong (k ≥ 5). As seen above, we can insert

x0, x1 and x2 individually into CH without reducing the number of pancyclic
arcs contained in the resulting cycle. �

3. Main result

Theorem 3.1.

hk(n) ≥
2k + 7

3
for k ≥ 1.

Proof. We will prove the theorem by induction on k. We already know that it
is true for k ∈ {1, 2, 3, 4} from Theorem 1.1 and Theorem 1.3. So let T be a
k-strong tournament with k ≥ 5 and let M = {x ∈ V (T ) | d+(x) = δ+(T )}.

Case 1 . |M | ≥ 3. Let x0, x1, x2 ∈ M .
By Lemma 2.3, we have that all out-arcs of x1, x2 and x3 are pancyclic. Since

T is k-strong (k ≥ 5), T − {x0, x1, x2} is a (k − 3)-strong tournament. Thus,
by the induction hypothesis, there is a Hamiltonian cycle CH = v0v1 · · · vn−4v0

in T − {x0, x1, x2} that contains at least 2(k−3)+7
3 arcs which are pancyclic

in T − {x0, x1, x2}. By Lemma 2.6, these arcs are also pancyclic in T . If
T [{x0, x1, x2}] is a 3-cycle, then Lemma 2.7 gives us the result.

Thus, without loss of generality, we may assume that T [{x0, x1, x2}] is not a
3-cycle and xi → xj for all 0 ≤ i < j ≤ 2. If there is no index i ∈ {0, . . . , n−4},
such that x2 → vi+1 mod n−3 and vi → x0, then x0 has at least as many out-
neighbors in V (T ) \ {x0, x1, x2} as x2. Therefore, we have

d+(x0) = d+
T−{x1,x2}

(x0) + d+
T [{x0,x1,x2}]

(x0)

= d+
T−{x1,x2}

(x0) + 2 > d+
T−{x0,x1}

(x2) + 0

= d+
T−{x0,x1}

(x2) + d+
T−{x0,x1,x2}

(x2) = d+(x2),

a contradiction to d+(x0) = d+(x2) = δ+(T ). Thus, there is such an index i

and we obtain a Hamiltonian cycle of T that contains at least 2k+7
3 pancyclic

arcs as in Lemma 2.7.
Case 2 . |M | ≤ 2.
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If |M | = 2, let x0, x1 ∈ M , such that x0 → x1. If |M | = 1, let x0 ∈ M and
x1 ∈ N+(x0), such that d+(x1) = min{d+(w) | w ∈ N+(x0)}. From Theorem
2.4 we know that all out-arcs of x0 and x1 are pancyclic.

Suppose that N+(x0) ∩ N+(x1) 6= ∅ or N+(x0) ∩ N+(N+(x1)) 6= ∅. Then
Lemma 2.5 gives us the existence of an x2 ∈ N+(x0) \ {x1}, such that all
out-arcs of x2 are pancyclic. Without loss of generality, we may assume that
x1 → x2. Otherwise, we simply swap x1 and x2. Thus, we have xi → xj for
all 0 ≤ i < j ≤ 2, a Hamiltonian cycle CH = v0v1 · · · vn−4v0 of T −{x0, x1, x2}
that contains at least 2(k−3)+7

3 pancyclic arcs (by the induction hypothesis)
and d+(x0) ≤ d+(x2). Our proposition follows as in Case 1.

Suppose now that N+(x0) ∩ N+(x1) = N+(x0) ∩ N+(N+(x1)) = ∅ and
let us denote this property by (⋆⋆). Let x2 ∈ N+(x1), such that d+(x2) =
min{d+(w) | w ∈ N+(x1)} and let CH = v0v1 · · · vn−4v0 be a Hamiltonian

cycle of T − {x0, x1, x2} that contains at least 2(k−3)+7
3 pancyclic arcs, whose

existence is guaranteed by the induction hypothesis. By (⋆⋆), we then have
x2 → x0. From d+(x2) > δ+(T ) = d+(x0), it follows that x2 has more out-
neighbors in V (T ) \ {x0, x1, x2} than x0. Consequently, as seen above, there is
an index i ∈ {0, . . . , n−4}, such that x2 → vi+1 mod n−3 and vi → x0. Without
loss of generality, we may assume that i = 0 (up to rotation and relabeling of
CH).

Let us now consider the Hamiltonian cycle C = v0x0x1x2v1 · · · vn−4v0 of T .

If v0v1 is not pancyclic in T −{x0, x1, x2}, then C contains at least 2(k−3)+7
3 +

2 = 2k+7
3 pancyclic arcs (those of CH plus the out-arcs of x0 and x1). Suppose

that v0v1 is pancyclic in T − {x0, x1, x2} (and therefore in T ). We will show
that the arc x2v1, then, is also pancyclic in T . Consequently, C then contains

at least 2(k−3)+7
3 − 1 + 3 = 2k+7

3 pancyclic arcs and we have finished.
The pancyclicity of v0v1 guarantees the existence of an l-cycle

v0v1w2 · · ·wl−1v0

in T − {x0, x1, x2} for all 3 ≤ l ≤ n − 3. Then x2v1w2 · · ·wl−1v0x0x1x2 is an
(l+3)-cycle in T that contains x2v1 for all 3 ≤ l ≤ n−3. Thus, all that remains
to be shown is that x2v1 is contained in cycles of length 3 to 5 in T .

If x1 → v1, then we have d+(v1) ≥ d+(x2) = min{d+(w) | w ∈ N+(x1)} and
thus, x2v1 is already pancyclic, by Lemma 2.3. Hence, we may assume that
v1 → x1. Then x2v1 is contained in the 3-cycle x2v1x1x2. Furthermore, (⋆⋆)
gives us v1 → x0 and thus, x2v1 is contained in the 4-cycle x2v1x0x1x2. Finally,
if v2 → x0, then x2v1 is contained in the 5-cycle x2v1v2x0x1x2. Otherwise, i.e.,
x0 → v2, we have v2 → x1 by (⋆⋆), and therefore x2v1 is contained in the
5-cycle x2v1x0v2x1x2. �
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