• Title/Summary/Keyword: hall measurement

Search Result 494, Processing Time 0.031 seconds

Characterization of N-doped SiC(3C) epilayer by CVD on Si(111) (화학기상증착으로 Si(111) 위에 성장된 N-SiC(3C) 에피층의 특성)

  • 박국상;김광철;남기석;나훈균
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.39-42
    • /
    • 1999
  • Nitrogen-doped SiC(3C) (N-SiC(3C)) epliayers were grown on Si(111) substrate at $1250^{\circ}C$ using chemical vapor deposition (CVD) technique by pyrolyzing tetramethylsilane(TMS) in $H_{2}$ carrier gas. SiC(3C) layer was doped using $NH_{3}$ during the CVD growth to be n-type conduction. Physical properties of N-SiC(3C) were investigated by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) patterns, Raman spectroscopy, cross-sectional transmission electron microscopy (XTEM), Hall measurement, and current-voltage(I-V) characteristcs of the N-SiC(3C)/Si(p) diode. N-SiC(3C) layers exhibited n-type conductivity. The n-type doping of SiC(3C) could be controlled by nitrogen dopant using $NH_{3}$ at low temperature.

  • PDF

Growth and Characterization of $CulnSe_2$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $CulnSe_2$ 박막 성장과 특성)

  • 홍광준;이상열;박진성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.6
    • /
    • pp.445-454
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the CuInSe$_2$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, CuInSe$_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were 62$0^{\circ}C$ and 41$0^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of CuInSe$_2$ single crystal thin films measured from Hall effect fby van der Pauw method are 9.62x10$^{16}$ cm$^{-3}$ , 296$\textrm{cm}^2$/V.s at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the CuInSe$_2$ single crystal thin film we have found that he values of spin orbit splitting ΔSo and the crystal field splitting ΔCr were 6.1 meV and 175.2 meV at 10K, respectively. From the photoluminescence measurement on CuInSe$_2$ single crystal thin film we observed free excition (Ex) existing only high quality crystal and neutral bound exiciton (D$^{\circ}$,X) having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy of neutral donor bound excition were 7meV and 5.9meV, respectivity. by Haynes rule, an activation energy of impurity was 50 meV.

  • PDF

RTA Effect on Transport Characteristics in Al0.25Ga0.75As/In0.2Ga0.8As pHEMT Epitaxial Structures Grown by Molecular Beam Epitaxy (MBE로 성장된 Al0.25Ga0.75As/In0.2Ga0.8As pHEMT 에피구조의 RTA에 따른 전도 특성)

  • Kim, Kyung-Hyun;Hong, Sung-Ui;Paek, Moon-Cheol;Cho, Kyung-Ik;Choi, Sang-Sik;Yang, Jeon-Wook;Shim, Kyu-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.605-610
    • /
    • 2006
  • We have investigated $Al_{0.25}Ga_{0.75}As/In_{0.2}Ga_{0.8}As$ structures for pseudomorphic high electron mobility transistor(pHEMT), which were grown by molecular beam epitaxy(MBE) and consequently annealed by rapid thermal anneal(RTA), using Hall measurement, photoluminescence, and transmission electron microscopy (TEM). According to intensity and full-width at half maximum maintained stable at the same energy level, the quantized energy level in $Al_{0.25}Ga_{0.75}As/In_{0.2}Ga_{0.8}As$ quantum wells was independent of the RTA conditions. However, the Hall mobility was decreased from $6,326cm^2/V.s\;to\;2,790cm^2/V.s\;and\;2,078cm^2/V.s$ after heat treatment respectively at $500^{\circ}C\;and\;600^{\circ}C$. The heat treatment which is indispensable during the fabrication procedure would cause catastrophic degradation in electrical transport properties. TEM observation revealed atomically non-uniform interfaces, but no dislocations were generated or propagated. From theoretical consideration about the mobility changes owing to inter-diffusion, the degraded mobility could be directly correlated to the interface scattering as long as samples were annealed below $600^{\circ}C$ lot 1 min.

A Study on an Implementation of Control Panel of Sun Trackers and Monitoring System for Photovoltaic Generation Plants (태양광발전의 태양추적기제어반 및 모니터링시스템 구현에 관한 연구)

  • Lho, Tae-Jung;Park, Min-Yong;Lee, Seung-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3161-3167
    • /
    • 2010
  • Hall sensors of BLDC(brushless DC) motor are used to detect a position information for a control mechanism, which implements an algorithm for velocity and position control. Actual azimuth and altitude were measured to evaluate a control precision. The measurement revealed comparatively good accuracy that the measured values were $2.02^{\circ}$ and $1.01^{\circ}$ respectively, and the maximum error falls within $1.86^{\circ}$. The developed monitoring system of photovoltaic generation plants is a LCU(Local Control Unit) based on an integrated monitoring system which supports 1:N method for multiple simultaneous connections, remote control and real-time system state monitoring.

Electrical and Optical Properties of the Ga-doped ZnO Thin Films Deposited on PES (Polyethersulfon) Substrate (PES 기판위에 제작한 Ga-doped ZnO 박막의 전기적 및 광학적 특성)

  • Chung, Yeun-Gun;Joung, Yang-Hee;Kang, Seong-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1559-1563
    • /
    • 2011
  • We fabricated gallium doped ZnO (GZO, 5 wt% Ga) thin films on PES (polyethersulfon) substrate with RF magnetron sputtering and investigated optical and electrical properties for various substrate temperatures ($50{\sim}200^{\circ}C$). All GZO thin film has c-axis preferred orientation without reference to deposition conditions. As a result of AFM analysis, the GZO thin film deposited at $200^{\circ}C$ exhibited the lowest surface roughness of 0.196nm. The transmittance of GZO thin films were above 80% and Burstein-Moss effect was observed. In the analysis of Hall measurement, we confirmed that the GZO thin film deposited at $200^{\circ}C$ showed the lowest resistivity of $6.93{\times}10-4{\Omega}{\cdot}cm$ and the highest carrier concentration of $7.04{\times}1020/cm^3$.

Fabrication and Characteristics of $CuInS_2$ thin films produced by Vacuum Evaporation (진공증착에 의해 제조된 $CuInS_2$ 박막의 제작 및 특성)

  • Yang, Hyeon-Hun;Jeong, Woon-Jo;Kim, Duck-Tae;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.15-17
    • /
    • 2008
  • $CuInS_2$ thin films were synthesized by sulpurization of Cu/In Stacked elemental layer deposited onto glass Substrates by vacuum furance annealing at temperature 200[$^{\circ}C$]. And structural and electrical properties were measured in order to certify optimum conditions for growth of the ternary compound semiconductor $CuInS_2$ thin films with non-stoichiometry composition. $CuInS_2$ thin film was well made at the heat treatment 200[$^{\circ}C$] of SLG/Cu/In/S stacked elemental layer which was prepared by thermal evaporator, and chemical composition of the thin film was analyzed nearly as the proportion of 1 : 1 : 2. Physical properties of the thin film were investigated at various fabrication conditions substrate temperature, annealing and temperature, annealing time by XRD, FE-SEM and hall measurement system. At the same time, carrier concentration, hall mobility and resistivity of the thin films was $9.10568{\times}10^{17}[cm^{-3}]$, 312.502[$cm^2/V{\cdot}s$] and $2.36{\times}10^{-2}[{\Omega}{\cdot}cm]$, respectively.

  • PDF

A study on the InSb crystal growth and the Zn diffusion (InSb 결정 성장과 Zn 확산에 관한 연구)

  • Kim, Back-Nyoun;Song, Bok-Sik;Moon, Dong-Chan;Kim, Seon-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.816-819
    • /
    • 1992
  • Binary compound semiconductor InSb crystal which has direct-transition energy gap (0.17 ev) grown by vertical Bridgman method, then the electric-magnetic and optical properties of InSb crystal were surveyed. The growth rate of the crystals was 1mm/hr and the lattice constant $a_\circ$ of the grown crystal was 6.4863$\AA$. The electrical properties were examined by the Hall effect measurement with the van der Pauw method in the temperature range of 70$\sim$300K, magnetic field range of 500$\sim$10000 gauss. The undoped InSb crystal was n-type, the concentration and the electron mobility were 2$\sim$6 ${\times}$ $10^{16}$$\textrm{cm}^{-3}$ and carrier mobility was 6$\sim$2${\times}$$10^{4}$$cm^{2}$/v.sec at 300K, respectively. The carrier mobility was decreased with $T^{-1/2}$ due to the lattice scattering above 100K, and decreased by impurity scattering below100K. The magnetoresistance was increased 190% at 9000 gauss as compared with non-appliced magnetic field and the magnetoresistance was increased with increasing the magnetic field. Also, the Hall voltage was increased with increasing the magnetic field and decreasing the thickness of sample. The optical energy band gap of InSb at room temperature determined using the IR spectrometer was 0.167eV. The diffusion depth of Zn into InSb proportionally increased with the square root of diffusion time and the activation energy for Zn diffusion was 0.67eV. The temperature dependence of diffusion coefficient was $D=4.25{\times}10^{-3}$exp (-0.67/$K_BT$).

  • PDF

A Study on Properties of Cu/In ratio on the $CuInS_2$ thin film (Cn/In 비에 따른 $CuInS_2$ 박막의 특성에 관한 연구)

  • Yang, Hyeon-Hun;Kim, Young-Jun;So, Soon-Youl;Jeong, Woon-Jo;Park, Gye-Choon;Lee, Jin;Chung, Hae-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.261-262
    • /
    • 2006
  • $CuInS_2$ thin films were synthesized by sulpurization of Cu/In Stacked elemental layer deposited onto glass Substrates by vacuum furance annealing at temperature 200[$^{\circ}C$]. And structural and electrical properties were measured in order to certify optimum conditions for growth of the ternary compound semiconductor $CuInS_2$ thin films with non-stoichiometry composition. $CuInS_2$ thin film was well made at the heat treatment 200[$^{\circ}C$] of SLG/Cu/In/S stacked elemental layer which was prepared by thermal evaporator, and chemical composition of the thin film was analyzed nearly as the proportion of 1:1:2. Physical properties of the thin film were investigated at various fabrication conditions substrate temperature, annealing and temperature, annealing time by XRD, FE-SEM and hall measurement system. At the same time, carrier concentration, hall mobility and resistivity of the thin films was $9.10568{\times}10^{17}[cm^{-3}]$, 312.502 [$cm^2/V{\cdot}s$] and $2.36{\times}10^{-2}[{\Omega}{\cdot}cm]$, respectively.

  • PDF

Defect studies of annealed AgInS$_2$ epilayer (열처리된 AgInS$_2$ 박막의 defect 연구)

  • 백승남;홍광준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.257-265
    • /
    • 2002
  • A stoichiometric mixture of evaporating materials for AgInS$_2$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, AgInS$_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy(HWE) system. The source and substrate temperatures were 680 $^{\circ}C$ and 410 $^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction(DCXD). The carrier density and mobility of AgInS$_2$ single crystal thin films measured from Hall effect by van der Pauw method are 9.35${\times}$10$\^$16/ cm$\^$-3/ and 294 $\textrm{cm}^2$/V$.$s at 293 K, respectively. From the optical absorption measurement, the temperature dependence of the energy band gap on AgInS$_2$ single crystal thin films was found to be E$\_$g/(T) : 2.1365 eV - (9.89 ${\times}$ 10$\^$-3/ eV) T$^2$/(2930 + T). After the as-grown AgInS$_2$ single crystal thin films was annealed in Ag-, S-, and In-atmospheres, the origin of point defects of AgInS$_2$ single crystal thin films has been investigated by using the photoluminescence(PL) at 10 K. The native defects of V$\_$AG/, V$\_$S/, Ag$\_$int/, and S$\_$int/ obtained from PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the S-atmosphere converted AgInS$_2$ single crystal thin films to an optical p-type. Also, we confirmed that In in AgInS$_2$/GaAs did not form the native defects because In in AgInS$_2$ single crystal thin films did exist in the form of stable bonds.

  • PDF

Property Variation of Diamond-like Carbon Thin Film According to the Annealing Temperature (열처리에 따른 Diamond-like Carbon (DLC) 박막의 특성변화)

  • Park, Ch.S.;Koo, K.H.;Park, H.H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.49-53
    • /
    • 2011
  • Diamond-like carbon (DLC) films is a metastable form of amorphous carbon containing a significant fraction of Sp3 bond. DLC films have been characterized by a range of attractive mechanical, chemical, tribological, as well as optical and electrical properties. In this study DLC films were prepared by the RF magnetron sputter system on $SiO_2$ substrates using graphite target. The effects of the post annealing temperature on the Property variation of the DLC films were examined. The DLC films were annealed at temperatures ranging from 300 to $500^{\circ}C$ using rapid thermal process equipment in vacuum. The variation of electrical property and surface morphology as a function of annealing treatment was investigated by using a Hall Effect measurement and atomic force microscopy. Raman and X-ray photoelectron spectroscopy analyses revealed a structural change in the DLC films.