• Title/Summary/Keyword: hair growth promotion

Search Result 50, Processing Time 0.027 seconds

Hair Growth Promotion Effect of a Bio-Active Shampoo, Bonogen in C57BL/6 Mice (C57BL/6 마우스에서 기능성 샴푸 Bonogen의 양모 촉진 효과)

  • Hong, Jin-Tae;Lee, Se-Ra;Kim, Hwan-Hee;Jo, Young-Kwang;Baek, In-Jeoung;Yon, Jung-Min;Nahm, Sang-Seop;Kwack, Dong-Hoon;Lee, Jung-Eun;Lee, Beom-Jun;Yun, Young-Won;Kim, Cheol-Jung;Nam, Sang-Yoon
    • Toxicological Research
    • /
    • v.22 no.3
    • /
    • pp.221-228
    • /
    • 2006
  • Bonogen shampoo is composed of several plant extracts which are known to be used in oriental medicine. This study was carried out to investigate the effects of Bonogen shampoo on hair growth in an alopecia model of C57BL/6 mice. There were eight male and female experimental groups including distilled water(DW: negative control), a commercial shampoo[M], 3% minoxidil (MXD) and Bonogen shampoo(BNG). Dorsal skin hair of six-week-old mice was trimmed with an electric clipper carefully not to damage the skin. The next day, mice without skin scratch were selected, randomized and separated in 10 mice per group. The test compounds were topically treated with 0.15 ml per mouse or dorsal skin for 21 days daily and then washed thoroughly with DW. The hair regrowth was determined photographically at 0, 4, 7, 10, 15, 18, and 21 days and histologically at day 21. No clinical signs were observed in all mice. Although body weight was slightly increased in 3% MXD group than other groups, it was not significant. Hair regrowth began to be promoted after 14 days and appeared a distinct regrowth pattern in all animals by topical treatment of test compounds at 18 days. In particular, the topical treatment of bonogen shampoo or 3% MXD for 21 days to dorsal skin accelerated hair regrowth faster than DW or M shampoo. At 21 days, the hair regrowth promotion speed was in order of 3% MXD>BNG>M>DW. The bonogen shampoo or 3% MXD also promoted hair follicle elongation compared to the negative control. These results suggest that bonogen shampoo has hair growth promoting activities and may be useful for treatment of bald or alopecia.

Hair Growth Promoting Effect of Black Soybean Extract In Vitro and In Vivo (In vitro 및 in vivo에서 검은콩 추출물의 육모 효과)

  • Jeon, Hee-Young;Kim, Seung-Hun;Kim, Chae-Wook;Shin, Hyun-Jeong;Seo, Dae-Bang;Lee, Sang-Jun
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.747-753
    • /
    • 2011
  • It is commonly believed that black soybean (Glycine max: BB) prevents and alleviates hair loss. However, few studies have directly assessed the effect of BB on hair growth. We presently evaluated the mitosis induction on dermal papillae cell and mitogenic effect on NIH3T3 cells in vitro. To elucidate the hair growth promoting effect in vivo, anagen induction and hair restoration were examined in a shaving model of C57BL/6 mice. We also conducted biochemical analysis of blood plasma. Significant stimulation of dermal papillae and NIH3T3 cell proliferation were observed by treatment of BB in a dose-dependent manner. BB markedly promoted hair growth and significantly improved blood total antioxidant capacity and reduced lipid peroxidation and triglyceride level. These results suggest that BB has hair growth promoting effect and it is a potent candidate for the prevention of hair loss.

The Hair Growth Effects of Wheat Bran (밀기울의 모발 성장 효과)

  • Kang, Jung-Il;Moon, Jungsun;Kim, Eun-Ji;Lee, Young-Ki;Koh, Young-Sang;Yoo, Eun-Sook;Kang, Hee-Kyoung;Yim, Dongsool
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.4
    • /
    • pp.384-390
    • /
    • 2013
  • This study was conducted to evaluate the effect of wheat bran on the promotion of hair growth. When rat vibrissa follicles were treated with n-hexane fraction of wheat bran, the hair-fiber lengths of the vibrissa follicles significantly increased. Moreover, n-hexane fraction of wheat bran was found to significantly induce the telogen-anagen transition in C57BL/6 mice. The fraction increased the proliferation of immortalized vibrissa dermal papilla cells (DPCs) in a dose dependent manner. To elucidate the molecular mechanisms in relation to proliferation of DPCs by the fraction of wheat bran, we examined the expression of cell cycle proteins and wnt/${\beta}$-catenin signaling components. Western blot analysis revealed that the proliferation of DPC by n-hexane fraction of wheat bran was accompanied by increased the level of cyclin D1, cyclin E, phospho-CDK2 and phospho-pRB. In addition, the fraction of wheat bran increased the level of phospho(ser552)-${\beta}$-catenin, phospho(ser675)-${\beta}$-catenin and phospho(ser9)-GSK$3{\beta}$. These results suggest that the hair growing potential of wheat bran mediated by proliferation of DPCs via the regulation of cell cycle proteins and Wnt/${\beta}$-catenin signaling.

Experiment on the effect of Artemisia sieversiana extract on hair loss prevention and cell growth

  • Yang, Seungbo;Jin, Chul;Kwon, Seungwon;Cho, Seung-Yeon;Park, Seong-Uk;Jung, Woo-Sang;Moon, Sang-Kwan;Park, Jung-Mi;Cho, Ki-Ho;Ko, Chang-Nam
    • The Journal of Korean Medicine
    • /
    • v.43 no.1
    • /
    • pp.18-32
    • /
    • 2022
  • Objectives: This study aimed to examine the safety, effects on proliferation of hair papilla cells, and anti-inflammatory and antioxidant mechanisms of Artemisia sieversiana Ehrh. ex Willd. (AS) extract. Methods: Safety tests through purity testing, acute toxicity tests, and repeated toxicity tests were performed using AS extract (ASE) which had been dried for over two years. Cell culture and proliferation tests were conducted; VEGF (vascular endothelial growth factor), bFGF (basic fibroblast growth factor), and EGF (epidermal growth factor) and protein expression analyses were performed for mechanistic evaluation; and inhibitory effects of ASE on the RNA expression of testosterone, 5𝛼-reductase, and aromatase was assessed. The anti-inflammatory and antioxidant efficacy of ASE was confirmed by measuring the levels of nitric oxide, inflammatory mediators (TNF-𝛼 and PGE2), inflammatory cytokines (IL-1𝛽, IL-6, and IL-8), and chemokine MCP-1. Results: The safety of ASE was confirmed. The mechanism of cell proliferation in human hair follicle dermal papilla cells involved the promotion of VEGF, bFGF, and EGF expression. ASE decreased mRNA expression of testosterone, 5𝛼-reductase, and aromatase-1 in a concentration-dependent manner. PGE2 and TNF-𝛼 production by inflammatory mediators was also significantly decreased in a concentration-dependent manner, and inflammatory cytokine and chemokine expression was inhibited. Conclusions: ASE is suggested to promote papillary cell growth at the cellular level, to suppress expression of various enzymes involved in hair cycle and cell death, and to inhibit hair loss through anti-androgen, anti-inflammatory, and antioxidant effects.

The Promoting Effect of Pleuropterus cilinervis Extracts Fermented with Lactobacillus rhamnosus on Hair Growth (백하수오 발효액의 모발성장 효과)

  • Park, Jang-Soon;Lee, Jae-Sug
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.4
    • /
    • pp.345-349
    • /
    • 2011
  • The bacterial growth and pH of Pleuropterus cilinervis extracts and animal milk, fermented with Lactobacillus rhamnosus during the fermentation process, were evaluated. The results indicated that the bacterial count after fermentation always remained higher than 6 log CFU/mL, with a constant pH of approximately 4. In order to evaluate the effects of Pleuropterus cilinervis extracts and animal milk, fermented with Lactobacillus rhamnosus, on hair growth promotion, C57BL/6 mice were chosen as experimental subjects. Six week old males with similar body weights were divided into four groups; a normal group (saline), a negative control group (essence base), a positive control group and an experimental group (Pleuropterus cilinervis extracts and animal milk, fermented with Lactobacillus rhamnosus, mixed with negative control). The substances and test materials were applied topically on the back skin of the mice for 8 days. Other external conditions and variables such as food intake were kept at the same as the four groups. At the end of the experiment it was noted that hair re-growth in the experimental group, using gross and histological examinations, was higher than that in the positive control group. This study therefore provides an empirical evidence that Pleuropterus cilinervis extracts and animal milk fermented with Lactobacillus rhamnosus promotes hair growth, and suggests that applications could be found in hair loss treatments.

Medicinal Herbal Complex Extract with Potential for Hair Growth-Promoting Activity (발모효과를 가지는 한방복합처방단)

  • Lee, Jun Young;Im, Kyung Ran;Jung, Taek Kyu;Lee, Myoung-Hee;Yoon, Kyung-Sup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.4
    • /
    • pp.277-287
    • /
    • 2012
  • To develop new therapeutic materials to prevent hair loss and enhance hair growth, we developed a medicinal herbal complex extract (MHCE) using 23 herbs traditionally used in oriental medicine. Medicinal Herbal complex extract was consist of Angelica gigas Nakai, Psoralea corylifolia Linne, Biota orientalis Endlicher, and Eclipta prostrata Linne, Rehmannia glutinosa Liboschitz var. purpurea Makino, Ligustrum lucidum Aiton, Polygonum multiflorum Thunberg, and Sesamum indicum Linne, Sophora angustifolia Sieboldet Zuccarini, Angelica dahurica Benthamet Hooker, and Leonurus sibiricus Linne, Salvia miltiorrhiza Bunge, Prunus persica Batsch, Commiphora molmol Engler, Chrysanthemum indicum Linne, Boswellia carterii Birdwood, Panax ginseng C. A. Meyer, Cnidium officinale Makino, Albizia julibrissin Durazzini, and Corydalis ternata Nakai that have traditionally been used for treating hair loss, preventing gray hair, anti-inflammation, and blood circulation in oriental medicine. In addition, we examined the hair growth effect of MHCE in vitro and in vivo. In vitro, we evaluated the effects of MHCE on cultured HFDPC, HaCaT cells, and murine embryonal fibroblasts (NIH3T3 cells). Also, we evaluated the ability of MHCE to prevent gray hair on murine melanoma cells (B16F1 cells). The hair growth-promoting effect of MHCE in vitro was also observed in vivo using C57BL/6 mice. Our results showed that MHCE significantly increased the proliferation of HFDPC (175 % proliferation at $50{\mu}g/mL$), HaCaT cells (133 % proliferation at $20{\mu}g/mL$), and NIH3T3 cells (120 % proliferation at $50{\mu}g/mL$). MHCE also showed consistent melanogenesis in B16F1 cells (154 % melanin synthesis at $50{\mu}g/mL$). Moreover, MHCE showed potential for hair growth stimulation in C57BL/6 mice experiments (98 % hair growth area on 4 weeks). These results indicate that MHCE may be a good candidate for promotion of hair growth.

Collagen Increasing and Hair Growth Effect of Supramolecular Cosmetic Materials Containing Phytochemicals (식물성 유용물질을 함유하는 초분자체 화장제재의 콜라겐 증가 및 육모효과)

  • Cho, Hyun-Nam;Yoo, Dong-Chan;Kim, Kyoung-Ran;Byun, Hae-Jung;Kim, Jung-Hyun;Park, Hye-Bin;Bang, Dae-Suk;Yang, Seun-Ah;Khang, Gong-Won;Jhee, Kwang-Hwan
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.1
    • /
    • pp.83-89
    • /
    • 2012
  • Medicinal herbs have been shown to have protective functions for skin and hair. We investigated the effects of complex of soluble ${\beta}$-cyclodextrin and phytochemicals on the functions of skin and hair. In previous report, we evaluated the safety of supramolecules and found their anti-microbial effects and anti-fungal effect against Gram (+) and Malassezia furfur which is known to cause dandruff. Here we present that functional supramolecules-containing cream promotes the biological skin activity by inducing the collagen formation. And treatment of supramolecules-containing hair tonic increased the rate of hair growth of mouse. Taken together, supramolecular cosmetic compounds containing water insoluble phytochemicals and water soluble ${\beta}$-cyclodextrin exhibit the potential ability for hair growth promotion and delaying the aging of skin.

Promotion effects of steam-dried Betula platyphylla extract on hair regrowth (자작나무 증포 추출물의 발모 촉진 효과)

  • Ahn, Jeong Won;Jang, Su Kil;Jo, Bo Ram;Kim, Hyun Soo;Jeoung, Eui Young;Hillary, Kithenya;Yoo, Yeong Min;Joo, Seong Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.1
    • /
    • pp.43-51
    • /
    • 2022
  • Regulation of the hair follicle cycle in association with dermal papilla cells is one of the most interesting targets for promoting hair regrowth. In this study, we examined whether steam-dried Betula platyphylla extracts (BPE) promote hair growth by upregulating in vitro and in vivo responses of dermal papilla cells. The data showed that BPE3 contained high amounts of phenolic compounds with higher antioxidant effects and increased hair growth-related genes, including fibroblast growth factor7 and Wnt7b, in dermal papilla cells. Notably, BPE3 effectively enhanced the formation of hair follicles by increasing FGF7, Wnt7b, and vascular endothelial growth factor in C57BL/6N dorsal skins. Additionally, BPE3 significantly decreased the expression of inflammatory repertoires, inducible nitric oxide synthase, interleukin-6, and cyclooxygenase 2. Several small molecules, such as betulin and unsaturated fatty acids, support the pharmacological activity of BPE3. In conclusion, BPE3 effectively promoted hair growth by activating dermal papilla cells and enhancing hair follicle cycles by attenuating the inflammatory environment in the scalp.

Effect of Saussurea Lappa Root Extract on Proliferation and Hair Growth-related Signal Pathway in Human Hair Follicle Dermal Papilla Cells (당목향 뿌리 추출물의 인체 모유두세포 증식 및 모발 성장 관련 신호전달에 미치는 영향)

  • Chio, Hyoung-Chul;Jeong, Noh-Hee
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.647-652
    • /
    • 2021
  • In this study, Saussurea Lappa roots were extracted using ethanol and n-hexane, and also the effects on proliferation of human hair dermal papilla cells and fibroblast and related signaling pathway were evaluated. 3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide (MTT) assay was conducted for cell proliferation effect of Saussurea Lappa root extract, and extracellular signal-related kinase (ERK), serine/threonine protein kinase (Akt), wingless-related integration site (Wnt)/𝛽-catenin signaling pathway, and 5𝛼-reductase expression through western blot analysis were measured. Saussurea Lappa root extract significantly increased human hair dermal papilla cells and propagation of fibroblast, promoted phosphorylation of ERK and Akt that get involved in cell proliferation. Additionally, Saussurea Lappa root extract significantly decreased promotion of Akt phosphorylation and cell proliferation by MEK/ERK inhibitor PD98059 and PI3K/Akt inhibitor LY294002. Also, Saussurea Lappa root extract induced intranuclear 𝛽-catenin accumulation by promoting phosphorylation of 𝛽-catenin (Ser552, 675) through phosphorylation of GSK-3𝛽 (Ser9), and suppressed activation of 5𝛼-reductase type I and II. Overall, Saussurea Lappa root induces cell proliferation through vitalization of ERK and Akt route of human hair dermal papilla cells and fibroblast and apoptosis defense mechanism, and can be helpful in hair loss prevention and hair growth by vitalizing the 𝛽-catenin signaling pathway and inhibiting activation of 5𝛼-reductase, which can be used as a potential hair care products.

Panax ginseng (Korea Red Ginseng) repairs diabetic sensorineural damage through promotion of the nerve growth factor pathway in diabetic zebrafish

  • Nam, Youn Hee;Moon, Hyo Won;Lee, Yeong Ro;Kim, Eun Young;Rodriguez, Isabel;Jeong, Seo Yule;Castaneda, Rodrigo;Park, Ji-Ho;Choung, Se-Young;Hong, Bin Na;Kang, Tong Ho
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.272-281
    • /
    • 2019
  • Background: Diabetic sensorineural damage is a complication of the sensory neural system, resulting from long-term hyperglycemia. Red ginseng (RG) has shown efficacy for treatment of various diseases, including diabetes mellitus; however, there is little research about its benefit for treating sensorineural damage. Therefore, we aim to evaluate RG efficacy in alloxan-induced diabetic neuromast (AIDN) zebrafish. Methods: In this study, we developed and validated an AIDN zebrafish model. To assess RG effectiveness, we observed morphological changes in live neuromast zebrafish. Also, zebrafish has been observed to have an ultrastructure of hair-cell cilia under scanning electron microscopy. Thus, we recorded these physiological traits to assess hair cell function. Finally, we confirmed that RG promoted neuromast recovery via nerve growth factor signaling pathway markers. Results: First, we established an AIDN zebrafish model. Using this model, we showed via live neuromast imaging that RG fostered recovery of sensorineural damage. Damaged hair cell cilia were recovered in AIDN zebrafish. Furthermore, RG rescued damaged hair cell function through cell membrane ion balance. Conclusion: Our data suggest that RG potentially facilitates recovery in AIDN zebrafish, and its mechanism seems to be promotion of the nerve growth factor pathway through increased expression of topomyosin receptor kinase A, transient receptor potential channel vanilloid subfamily type 1, and mitogen-activated protein kinase phosphorylation.