• 제목/요약/키워드: hair follicle formation

검색결과 19건 처리시간 0.018초

Wound-Induced Hair Follicle Neogenesis as a Promising Approach for Hair Regeneration

  • Chaeryeong Lim;Jooyoung Lim;Sekyu Choi
    • Molecules and Cells
    • /
    • 제46권10호
    • /
    • pp.573-578
    • /
    • 2023
  • The mammalian skin contains hair follicles, which are epidermal appendages that undergo periodic cycles and exhibit mini-organ features, such as discrete stem cell compartments and different cellular components. Wound-induced hair follicle neogenesis (WIHN) is the remarkable ability to regenerate hair follicles after large-scale wounding and occurs in several adult mammals. WIHN is comparable to embryonic hair follicle development in its processes. Researchers are beginning to identify the stem cells that, in response to wounding, develop into neogenic hair follicles, as well as to understand the functions of immune cells, mesenchymal cells, and several signaling pathways that are essential for this process. WIHN represents a promising therapeutic approach to the reprogramming of cellular states for promoting hair follicle regeneration and preventing scar formation. In the scope of this review, we investigate the contribution of several cell types and molecular mechanisms to WIHN.

The Hairless Gene: A Putative Navigator of Hair Follicle Development

  • Kim, Jeong-Ki;Kim, Bong-Kyu;Park, Jong-Keun;Choi, Jee-Hyun;KimYoon, Sung-Joo
    • Genomics & Informatics
    • /
    • 제9권3호
    • /
    • pp.93-101
    • /
    • 2011
  • The Hairless (HR ) gene regulates the expression of several target genes as a transcriptional corepressor of nuclear receptors. The hair follicle (HF), a small independent organ of the skin, resides in the epidermis and undergoes regenerative cycling for normal hair formation. HF development requires many genes and signaling pathways to function properly in time and space, one of them being the HR gene. Various mutations of the HR gene have been reported to cause the hair loss pheno-type in rodents and humans. In recent studies, it has been suggested that the HR gene is a critical player in the regulation of the hair cycle and, thus, HF development. Furthermore, the HR gene is associated with the Wnt signaling pathway, which regulates proliferation and differentiation of cells and plays an essential role in hair and skin development. In this review, we summarize the mutations responsible for human hair disorders and discuss the roles of the HR gene in HF development.

Establishment and Characterization of Immortalized Human Dermal Papilla Cells Expressing Human Papillomavirus 16 E6/E7

  • Seonhwa Kim;Kyeong-Bae Jeon;Hyo-Min Park;Jinju Kim;Chae-Min Lim;Do-Young Yoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권3호
    • /
    • pp.506-515
    • /
    • 2024
  • Primary human dermal papilla cells (HDPCs) are often preferred in studies on hair growth and regeneration. However, primary HDPCs are limited by their reduced proliferative capacity, decreased hair induction potential, and extended doubling times at higher passages. To overcome these limitations, pTARGET vectors containing human papillomavirus16 (HPV16) E6/E7 oncogenes were transfected into HDPCs and selected using G-148 to generate immortalized cells here. HPV16 E6/E7 oncogenes were efficiently transfected into primary HDPCs. Immortalized HDPC showed higher proliferative activity than primary HDPC, confirming an increased proliferation rate. Expression of p53 and pRb proteins was downregulated by E6 and E7, respectively. E6/E7 expressing HDPC cells revealed that cyclin-dependent kinase (CDK) inhibitor p21 expression was decreased, while cell cycle-related genes and proteins (CDK2 and cyclin E) and E2F family genes were upregulated. Immortalized HDPCs maintained their responsiveness to Wnt/β-catenin pathway and hair follicle formation capability, as indicated by their aggregative properties and stemness. E6/E7 immortalized HDPCs may facilitate in vitro hair growth and regeneration studies.

고선량 및 저선량 방사선 조사 마우스에서 누에동충하초(Paecilomyces japonica)의 효과 (Modification of Radiation Response in Mice by Dongchongxiacao(Paecilomyces japonica))

  • 김세라;오헌;이해준;신동호;김종춘;박인철;오기석;조성기;김성호
    • 대한수의학회지
    • /
    • 제43권2호
    • /
    • pp.181-188
    • /
    • 2003
  • Cordyceps has a reputation for its broad biological activities and as a tonic which replenishs vital function in Chinese traditional medicines. As an attempt to obtain fundamental data for the development of new type Cordyceps, the effects of the fruiting bodies of cultivated fungus of Paecilomyces japonica grown on silkworm larvae on radiationinduced damages were investigated. We performed this study to determine the effect of Dongchongxiacao (Paecilomyces japonica) on jejunal crypt survival, endogenous spleen colony formation, and apoptosis in jejunal crypt cells and hair follicles of mice irradiated with high and low dose of gamma-radiation. Treatment with Dongchongxiacao showed no significant modifying effects on the jejunal crypt survival and endogenous spleen colony formation. The frequency of radiationinduced apoptosis was reduced by pretreatment of Dongchongxiacao (i.p.: 50 mg/kg of body weight, at 12 and 36 hours before irradiation, p<0.01). The spontaneous levels of apoptotic cells are $0.082{\pm}0.041$ in intestinal crypts and $0.231{\pm}0.084$ per hair follicle section of skin. Pretreatment of Dongchongxiacao was associated with decreases of 26.86% in intestinal crypt and 66.36% in hair follicle decrease in the number of cells with nuclei positively stained for apoptosis compared with the irradiation control group. We demonstrated for the first time that Dongchongxiacao administration could reduce the extent of apoptosis produced by radiation in the hair follicle. The results presented herein that Dongchongxiacao given before irradiation is capable of reducing the severity of cell loss as a result of apoptosis.

Ginsenoside Re prevents 3-methyladenine-induced catagen phase acceleration by regulating Wnt/β-catenin signaling in human dermal papilla cells

  • Gyusang Jeong;Seung Hyun Shin;Su Na Kim;Yongjoo Na;Byung Cheol Park;Jeong Hun Cho;Won-Seok Park;Hyoung-June Kim
    • Journal of Ginseng Research
    • /
    • 제47권3호
    • /
    • pp.440-447
    • /
    • 2023
  • Background: The human hair follicle undergoes cyclic phases-anagen, catagen, and telogen-throughout its lifetime. This cyclic transition has been studied as a target for treating hair loss. Recently, correlation between the inhibition of autophagy and acceleration of the catagen phase in human hair follicles was investigated. However, the role of autophagy in human dermal papilla cells (hDPCs), which is involved in the development and growth of hair follicles, is not known. We hypothesized that acceleration of hair catagen phase upon inhibition of autophagy is due to the downregulation of Wnt/β-catenin signaling in hDPCs, and that components of Panax ginseng extract can increase the autophagic flux in hDPCs. Methods: We generated an autophagy-inhibited condition using 3-methyladenine (3-MA), a specific autophagy inhibitor, and investigated the regulation of Wnt/β-catenin signaling using the luciferase reporter assay, qRT-PCR, and western blot analysis. In addition, cells were cotreated with ginsenoside Re and 3-MA and their roles in inhibiting autophagosome formation were investigated. Results: We found that the unstimulated anagen phase dermal papilla region expressed the autophagy marker, LC3. Transcription of Wnt-related genes and nuclear translocation of β-catenin were reduced after treatment of hDPCs with 3-MA. In addition, treatment with the combination of ginsenoside Re and 3-MA changed the Wnt activity and hair cycle by restoring autophagy. Conclusions: Our results suggest that autophagy inhibition in hDPCs accelerates the catagen phase by downregulating Wnt/β-catenin signaling. Furthermore, ginsenoside Re, which increased autophagy in hDPCs, could be useful for reducing hair loss caused by abnormal inhibition of autophagy.

갈근 추출물의 스트레스성 백모 형성 억제 효과 (Anti-Graying Effect of Pueraria Lobata Root Extract on Stress-Induced Hair Graying)

  • 홍민정;박병철;홍용덕;김수나
    • 대한화장품학회지
    • /
    • 제48권3호
    • /
    • pp.287-293
    • /
    • 2022
  • 흰머리는 대표적인 노화의 징후이자 피부, 모발 노화의 특징이다. 내인성 노화, 스트레스, 외부 환경으로 인해 백모가 발생하는데, 조기 백모 발생에는 스트레스가 주요한 요인이 된다고 알려져 있다. 과거 우리는 갈근 추출물이 멜라닌 형성 촉진을 통해 백모를 케어를 할 수 있음을 밝힌 바 있으며, 이에 갈근 추출물이 스트레스에 의한 백모 형성 또한 예방 할 수 있을지 본 연구를 통해 확인하였다. 연구를 위해 멜라닌 생성 주요 전사인자인 MITF 발현을 확인 할 수 있는 세포주를 구축하였다. 스트레스 호르몬 cortisol과 산화 스트레스 유발 인자 H2O2를 처리할 경우 MITF 발현이 감소하고, 인체 모낭 조직에서 멜라닌 색소가 감소함을 확인하였다. 여기에 갈근 추출물을 함께 처리할 경우 MITF 발현과 모낭 내 멜라닌 색소 량이 다시 증가하였다. 뿐만 아니라 모낭 내 멜라닌 합성에 관여하는 효소인 TRP-2의 발현도 증가함을 확인할 수 있었다. 이러한 결과를 통해 갈근 추출물은 스트레스 호르몬과 산화 스트레스 자극에 의한 멜라닌 합성 저해도 효과적으로 막아줄 수 있음을 입증하였다.

miR-133a-3p and miR-145-5p co-promote goat hair follicle stem cell differentiation by regulating NANOG and SOX9 expression

  • Jian Wang;Xi Wu;Liuming Zhang;Qiang Wang;Xiaomei Sun;Dejun Ji;Yongjun Li
    • Animal Bioscience
    • /
    • 제37권4호
    • /
    • pp.609-621
    • /
    • 2024
  • Objective: Hair follicle stem cells (HFSCs) differentiation is a critical physiological progress in skin hair follicle (HF) formation. Goat HFSCs differentiation is one of the essential processes of superior-quality brush hair (SQBH) synthesis. However, knowledge regarding the functions and roles of miR-133a-3p and miR-145-5p in differentiated goat HFSCs is limited. Methods: To examine the significance of chi-miR-133a-3p and chi-miR-145-5p in differentiated HFSCs, overexpression and knockdown experiments of miR-133a-3p and miR-145-5p (Mimics and Inhibitors) separately or combined were performed. NANOG, SOX9, and stem cell differentiated markers (β-catenin, C-myc, Keratin 6 [KRT6]) expression levels were detected and analyzed by using real-time quantitative polymerase chain reaction, western blotting, and immunofluorescence assays in differentiated goat HFSCs. Results: miR-133a-3p and miR-145-5p inhibit NANOG (a gene recognized in keeping and maintaining the totipotency of embryonic stem cells) expression and promote SOX9 (an important stem cell transcription factor) expression in differentiated stem cells. Functional studies showed that miR-133a-3p and miR-145-5p individually or together overexpression can facilitate goat HFSCs differentiation, whereas suppressing miR-133a-3p and miR-145-5p or both inhibiting can inhibit goat HFSCs differentiation. Conclusion: These findings could more completely explain the modulatory function of miR-133a-3p and miR-145-5p in goat HFSCs growth, which also provide more understandings for further investigating goat hair follicle development.

Udenafil Induces the Hair Growth Effect of Adipose-Derived Stem Cells

  • Choi, Nahyun;Sung, Jong-Hyuk
    • Biomolecules & Therapeutics
    • /
    • 제27권4호
    • /
    • pp.404-413
    • /
    • 2019
  • Udenafil, which is a $PDE_5$ inhibitor, is used to treat erectile dysfunction. However, it is unclear whether udenafil induces hair growth via the stimulation of adipose-derived stem cells (ASCs). In this study, we investigated whether udenafil stimulates ASCs and whether increased growth factor secretion from ASCs to facilitate hair growth. We found that subcutaneous injection of udenafiltreated ASCs accelerated telogen-to-anagen transition in vivo. We also observed that udenafil induced proliferation, migration and tube formation of ASCs. It also increased the secretion of growth factors from ASCs, such as interleukin-4 (IL-4) and IL12B, and the phosphorylation of ERK1/2 and $NF{\kappa}B$. Furthermore, concomitant upregulation of IL-4 and IL12B mRNA levels was attenuated by ERK inhibitor or $NF{\kappa}B$ knockdown. Application of IL-4 or IL12B enhanced anagen induction in mice and increased hair follicle length in organ culture. The results indicated that udenafil stimulates ASC motility and increases paracrine growth factor, including cytokine signaling. Udenafil-stimulated secretion of cytokine from ASCs may promote hair growth via the ERK and $NF{\kappa}B$ pathways. Therefore, udenafil can be used as an ASC-preconditioning agent for hair growth.

자작나무 증포 추출물의 발모 촉진 효과 (Promotion effects of steam-dried Betula platyphylla extract on hair regrowth)

  • 안정원;장수길;조보람;김현수;정의영;힐러리 키테냐;유영민;주성수
    • 한국식품과학회지
    • /
    • 제54권1호
    • /
    • pp.43-51
    • /
    • 2022
  • 본 연구에서는 자작나무 증포 추출물의 탈모 조절 활성 분석을 위해 in vitro (인간모유두세포) 및 in vivo (C57BL/6N 마우스) 모델을 이용하여 모발의 성장 효과를 평가하였다. 찌고 말리는 과정을 반복하는 증포 차수 별 함유 성분의 변화가 관찰되어 새로운 추출법의 가능성을 확인하였다, 즉, 1회-5회 증포 후 관찰된 성분의 변화는 3회 증포 추출물(BPE3)에서 안정적인 추출 수율, 높은 페놀화합물 함량 및 항산화 활성을 가지는 것으로 확인되었다. 또한, 발모 주기의 전 과정에 관여하는 모유두세포에 BPE3를 처리하였을 때 유의한 수준의 FGF7과 Wnt7b 발현을 증가시켜 모발 성장 촉진과 모발의 성장기 개시를 도울 것으로 판단되었다. In vivo 마우스 모델에 12일 간 BPE를 도포하여 관찰한 결과 6일 경과 시 양성대조군(MXD 및 PTN)과 유사한 수준으로 단모의 성장이 관찰되었으며, 9일 경과 시 높은 밀도의 발모가 진행되기 시작하여 12일 경과 시 미처리 대조군에 비해 BPE3군에서 고른 발모가 관찰되었다. H&E 염색을 통한 각 군별 피부조직의 변화는 BPE3군에서 뚜렷이 나타났으며, 특징적으로 단위면적 당 많은 모낭(hair follicle)의 형성과 모간부(hair shaft)의 신장이 관찰되어 안정적으로 모발의 성장기로 진입한 것으로 판단되었다. 피부조직의 유전자발현 추가 분석 시 FGF7, VEGF, 및 Wnt7b 유전자가 유의하게 증가하여 모발성장, 분화, 모낭줄기세포 활성을 유도하여 모발성장을 촉진시킨 것으로 생각된다. 또한, BPE3가 LPS로 유도된 RAW264.7 세포의 염증인자(iNOS, IL-6 및 COX2) 발현을 저해하여 자가면역 등 염증성 탈모억제에 긍정적 역할을 할 것으로 판단된다. GC-MS 분석을 통해 확인한 betulin과 불포화지방산 등 저분자 물질은 BPE3가 나타낸 약리활성을 방증하였다. 결론적으로, 자작나무 3회 증포 추출물인 BPE3는 모유두세포의 발모 주기를 촉진할 뿐 아니라 두피의 염증 환경에서 휴지기를 단축시켜 정상적 발모를 돕는 소재로서 높은 잠재력을 나타냈다.

Human umbilical cord blood mesenchymal stem cells engineered to overexpress growth factors accelerate outcomes in hair growth

  • Bak, Dong Ho;Choi, Mi Ji;Kim, Soon Re;Lee, Byung Chul;Kim, Jae Min;Jeon, Eun Su;Oh, Wonil;Lim, Ee Seok;Park, Byung Cheol;Kim, Moo Joong;Na, Jungtae;Kim, Beom Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권5호
    • /
    • pp.555-566
    • /
    • 2018
  • Human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) are used in tissue repair and regeneration; however, the mechanisms involved are not well understood. We investigated the hair growth-promoting effects of hUCB-MSCs treatment to determine whether hUCB-MSCs enhance the promotion of hair growth. Furthermore, we attempted to identify the factors responsible for hair growth. The effects of hUCB-MSCs on hair growth were investigated in vivo, and hUCB-MSCs advanced anagen onset and hair follicle neogeneration. We found that hUCB-MSCs co-culture increased the viability and up-regulated hair induction-related proteins of human dermal papilla cells (hDPCs) in vitro. A growth factor antibody array revealed that secretory factors from hUCB-MSCs are related to hair growth. Insulin-like growth factor binding protein-1 (IGFBP-1) and vascular endothelial growth factor (VEGF) were increased in co-culture medium. Finally, we found that IGFBP-1, through the co-localization of an IGF-1 and IGFBP-1, had positive effects on cell viability; VEGF secretion; expression of alkaline phosphatase (ALP), CD133, and ${\beta}-catenin$; and formation of hDPCs 3D spheroids. Taken together, these data suggest that hUCB-MSCs promote hair growth via a paracrine mechanism.