• Title/Summary/Keyword: haematococcus extract

Search Result 6, Processing Time 0.017 seconds

Effect of Enzyme Treatments on the Extraction Efficacy and Antioxidant Activity of Haematococcus Extract from Haematococcus pluvialis (Haematococcus pluvialis로부터 Haematococcus 추출물 제조 공정에서 효소 처리가 추출 효율과 항산화 활성에 미치는 영향)

  • In, Man-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.194-199
    • /
    • 2009
  • An efficient production method of food-grade heamatococcus extract was developed based on stepwise enzymatic hydrolysis. In the first step, Haematococcus pluvialis cells hydrolysis carried out with commercially available exopeptidase(Flavourzyme) and endopeptidase (Alcalase), resulted in increased astaxanthin content. In the second step, proteolytic hydrolyzed H. pluvialis cells treated with hetero-polysaccharides hydrolytic enzyme (Viscozyme). By two-stage treatments using Alcalase and Flavourzyme and Viscozyme, the highest astaxanthin content was obtained. The astaxanthin content was remarkably enhanced by 320% $(529{\mu}g/g\rightarrow2,256{\mu}g/g)$ than that of the non-treated extract. And then, antioxidative activities determined by DPPH method were increased with increasing the astaxanthin content in haematococcus extract prepared by enzymatic hydrolysis.

Identification of Carotenoids from Green Alga Haematococcus pluvialis by HPLC and LC-MS (APCI) and Their Antioxidant Properties

  • Ranga, Rao;Sarada, A.R.;Baskaran, V.;Ravishankar, G.A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1333-1341
    • /
    • 2009
  • Haematococcus pluvial is, a green alga, accumulates astaxanthin (3,3'-dihydroxy-$\beta$,$\beta$'-carotene-4,4'-dione) upto 2-3% on a dry weight basis. In the present study, identification of carotenoids from Haematococcus cyst cell extract by HPLC and LC-MS (APCI) and their antioxidant properties were evaluated in in vitro model systems. The extract exhibited 89% and 78% antioxidant activities in the $\beta$-carotene linoleate model and the hydroxyl radical scavenging model, at 9 ppm of total carotenoid, respectively. The extract also showed 80%, 85%, and 79% antioxidant activities against lipid peroxidation in the kidney, brain, and liver of rats. Low-density lipoprotein oxidation induced by $Cu^{2+}$ ions was also protected (45%, 64%, and 75%) by the extract in a dose-dependent manner with different carotenoid levels. Thiobarbituric acid reactive substances concentration in the blood, liver, and kidney of rats were also significantly (p<0.005) decreased in H. pluvialis-treated rats. The potent antioxidant activity is attributable to various carotenoids present in the extract.

Extraction and Analysis of Astaxanthin from Haematococcus pluvialis Using Sonication (초음파처리를 이용한 Haematococcus pluvialis로부터의 아스타잔틴의 추출 및 분석)

  • Kim, So-Young;Cho, Eun-Ah;Yoo, Ji-Min;In, Man-Jin;Chae, Hee-Jeong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.10
    • /
    • pp.1363-1368
    • /
    • 2008
  • The extraction and quantitative analysis conditions for astaxanthin from Haematococcus pluvialis, and the structural characteristics of H. pluvialis extract, H. pluvialis hydrolysate and synthetic astaxanthin were investigated using UV/visible and FT-IR spectrometers. Astaxanthin was dissolved in methanol, and then treated to enhance the solubility by sonication for 45 min. With sonication pretreatment, the solubility of astaxanthin increased up to 1.5 times compared to that without sonication. The extracts were hydrolyzed by cholesterol esterase for the analysis of H. pluvialis extract containing astaxanthin ester. A HPLC method using reverse phase C18 column with methanol-water (95:5, v/v) as mobile phase was developed to analyze astaxanthin. After hydrolysis, the absorption spectrum of H. pluvialis hydrolysat was changed to similar pattern to synthetic astaxanthin, confirming the extraction and analysis condition of astaxanthin from H. pluvialis.

Physiological Activity of Astaxanthin and its Inclusion Complex with Cyclodextrin (Astaxanthin과 Astaxanthin-Cyclodextrin 포접화합물의 생리활성)

  • Kim, So-Young;Cho, Eun-Ah;Yoo, Gui-Jae;Yoo, Ji-Min;Son, Seok-Min;In, Man-Jin;Kim, Dong-Chung;Chae, Hee-Jeong
    • KSBB Journal
    • /
    • v.24 no.6
    • /
    • pp.570-578
    • /
    • 2009
  • In vitro biological activities such as antioxidant, whitening, anti-hangover and anticancer activities were evaluated. The antioxidant activities of astaxanthin and H. pluvialis extract were significantly higher than that of $\alpha$-tocopherol when the antioxidant activities were determined as xanthine oxidase inhibition, hydroxyl radical scavenging and DPPH radical scavenging. The whitening effect of H. pluvialis extract was about two times as kojic acid. H. pluvialis extract indicated an anticancer activity on a cervical cancer cell line. Astaxanthin showed anti-hangover effect of 1.5 times as jiguja extract. The anti-hangover effect of the inclusion complex (As-$\beta$-CD) was about 1.2 times of jiguja extract. And, the inclusion complex of Haematococcus pluvialis (H.p.-$\beta$-CD) showed almost the same whitening effect as kojic acid.

Effects of the Various Dietary Additives on Growth and Tolerance of Abalone Haliotis discus hannai against Stresses (다양한 사료첨가제 공급에 따른 전복의 성장과 스트레스에 대한 내성 효과)

  • Cho, Sung-Hwoan;Kim, Chung-Il;Cho, Young-Jin;Lee, Bom-Sok;Park, Jung-Eun;Yoo, Jin-Hyung;Lee, Sang-Min
    • Journal of Aquaculture
    • /
    • v.21 no.4
    • /
    • pp.309-316
    • /
    • 2008
  • Effects of the various dietary additives on growth and tolerance of abalone Haliotis discus hannai to the stresses were determined in the 16-week feeding trial. Seventy juvenile (an initial body weight of 4.2 g) abalone per container were randomly distributed into 21, 50 L plastic rectangular containers each. The six kinds of experimental diets were prepared: control (CON) with no additive, by-product of green tea (BPG), extract of figs (EF), extract of green tea (EG), commercially available product of Hearok (PH), and Haematococcus (HC). In addition, dry sea tangle (ST) was prepared to compare the efficiency of the experimental diets. Fishmeal, soybean meal and shrimp head meal were used as the protein source, and dextrin, sea tangle powder and wheat flour, and soybean oil and fish oil were used as the carbohydrate and lipid sources, respectively in the experimental diets. The experimental diets were fed to abalone once a day at a satiation level with a little leftover. The feeding trial lasted for 16 weeks. At the end of the 16-week feeding trial, abalone was exposed to the different types of stresses (air exposure, and sudden changes of rearing temperature and salinity). Survival of abalone fed the sea tangle was highest. However, weight gain of abalone fed the EF, EG and PH diets was significantly (P<0.05) higher than that of abalone fed the BPG diet or dry sea tangle. Shell length of abalone fed the all experimental diets was significantly (P<0.05) higher than that of abalone fed the dry sea tangle. Accumulated mortality of abalone fed the sea tangle was low when exposed to the different types of stresses. Also, relatively low mortality was achieved in abalone fed the HC and EF diets. In considering these results, it can be concluded that the various sources of additives is effective to improve production of abalone, and Haematococcus and extract of figs can be considered as dietary additives to improve resistance of abalone against the different types of stresses.

Trends and Prospects of Microalgae used for Food (식품에 이용되는 미세조류와 이를 이용한 식품 연구개발 동향 및 전망)

  • Kwak, Ho Seok;Kim, Ji Soo;Lee, Ja Hyun;Sung, Dong Eun
    • Journal of the Korean Society of Food Culture
    • /
    • v.36 no.1
    • /
    • pp.66-75
    • /
    • 2021
  • Microalgae are unicellular microorganisms inhabiting various ecosystems of the world, including marine and freshwater systems and extreme environments. Only a few species have been actively used as food. Microalgae are attracting attention as a means of biological CO2 reduction because they play an important role in absorbing atmospheric CO2 through their rapid growth by photosynthesis in water. Besides, microalgae are considered to be an eco-friendly energy source because they can rapidly produce biomass containing a large quantum of lipids that can be converted into biodiesel. Several microalgae, such as Chlorella spp., Spirulina spp. and Haematococcus spp. have already been commercialized as functional health supplements because they contain diverse nutrients including proteins, vitamins, minerals, and functional substances such as docosahexaenoic acid (DHA), β-glucan, phycocyanin, astaxanthin, etc. Moreover, they have the potential to be used as food materials that can address the protein-energy malnutrition (PEM) which may occur in the future due to population growth. They can be added to various foods in the form of powder or liquid extract for enhancing the quality characteristics of the foods. In this review, we analyzed several microalgae which can be used as food additives and summarized their characteristics and functions that suggest the possibility of a role for microalgae as future food.