• Title/Summary/Keyword: hMG

Search Result 12,247, Processing Time 0.046 seconds

Sputtering yield and secondary electron emission coefficient ($\gamma$) of the MgO, $MgAl_2O_4$ and $MgAl_2O_4/MgO$ thin film grown on the Cu substrate by using the Focused Ion Beam

  • Jung, Kang-Won;Lee, H.J.;Jeong, W.H.;Oh, H.J.;Choi, E.H.;Seo, Y.H.;Kang, S.O.;Park, C.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.877-881
    • /
    • 2006
  • We obtained sputtering yields for the MgO, $MgAl_2O_4$ and $MgAl_2O_4/MgO$ films using the FIB system. $MgAl_2O_4/MgO$ protective layers have been found to have less $24^{\sim}^30%$ sputtering yield values from 0.24 atoms/ion up to 0.36 atoms/ion than MgO layers with the values from 0.36 atoms/ion up to 0.45 atoms/ion for irradiated $Ga^+$ ion beam whose energies ranged from 10 keV to 14 keV. And $MgAl_2O_4$ layers have been found to have lowest sputtering yield values from 0.88 up to 0.11. It is also found that $MgAl_2O_4/MgO$ and MgO have secondary electron emission $coefficient({\gamma})$ values from 0.09 up to 0.12 for $Ne^+$ ion whose energies ranged from 50 eV to 200 eV.

  • PDF

The Effect of Planetary Ball Mill Process on the Hydrogenation Behavior of Mg2NiHx (Mg2NiHx 수소화거동에 미치는 기계적합금화 공정의 영향)

  • Lim, Jae-Won;Ha, Won;Hong, Tae-Whan;Kim, Shae-Kwang;Kim, Young-Jig;Park, Hyun-Soon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.2
    • /
    • pp.131-139
    • /
    • 1999
  • The objective of this works was to synthesize the$Mg_2Ni$ hydrogen storage materials economically and to eliminate the intial activation process. $Mg_2NiH_x$ was mechanically alloyed under purified hydrogen gas atmosphere using pure Mg and Ni chips. M.A(Mechanical Alloying) was carried out using planetary ball mill for times varying from 12h to 96h under 20bars of hydrogen gas pressure. $Mg_2NiH_x$ started to form after 48h and the homogeneous $Mg_2NiH_x$ composites was synthesized after 96h. From TG analysis, the dehydriding reaction of $Mg_2NiH_x$ started at around $200^{\circ}C$. The result of P-C-T at $300^{\circ}C$ revealed the hydrogen storage capacity of $Mg_2NiH_c$ reached 3.68 wt% and the effective hydrogen storage was 2.38 wt%. The enthalpy difference of absorption-desorption cycling for the hydride formation and the hysteresis were reduced and the plateau flatness and the sloping were improved according to M.A time.

  • PDF

Ionic Characteristics of the Ground Water for Hydroponics in Kyeongnam Area (경남지역 양액재배용 지하수의 이온 분포특성)

  • 이영한;전성건;황연현;조강희;신원교
    • Journal of Bio-Environment Control
    • /
    • v.7 no.3
    • /
    • pp.246-252
    • /
    • 1998
  • This study was carried out to investigate the quality of ground water for hydroponics in Kyeongnam area in 1995. Water samples were collected and analyzed from 77 wells in green houses throughout Kyeongnam area. The values of several components in well water were as follows ; 7.4 in pH, 0.46dS/m in EC, 0.3mg/L in N $H_{4}$-N, 25.4mg/L in $Ca^{2+}$, 42.6mg/L in C $l^{[-10]}$ and 72.5mg/L in S $O_{4}$$^{2-}$. The pH value showed high positive significance of correlationships with $Ca^{2+}$ and EC. Also, the EC value showed high positive significance with N $a^{+}$, $Ca^{2+}$, S $O_{4}$$^{2-}$, $Mg^{2+}$ and C $l^{[-10]}$ .

  • PDF

Effect of pH Adjustment by CO2 on Coagulation and Aluminum Elution in Water Treatment (CO2 주입에 의한 pH 조정이 정수장 응집효율 및 알루미늄 용출에 미치는 영향)

  • Lee, Gil-Seong;Kim, Min-Chai;Kwon, Jae-Kook;Seo, Gyu-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.1
    • /
    • pp.17-22
    • /
    • 2013
  • In this study, a pH control method by carbon dioxide ($CO_2$) was applied to coagulation process in water treatment plant (WTP) to investigate the coagulation efficiency and residual dissolved aluminum when high pH raw water is flowing into the plant during algal blooming. Existing coagulant dose (1 mg/L in raw water) resulted in the pH reduction of 0.0384 by LAS, 0.0254 by PAC, 0.0201 by A-PAC, and 0.0135 by PACS2, respectively. And then the concentration of dissolved aluminum was 0.02 mg/L at pH 7.44, 0.07 mg/L at pH 7.96, 0.12 mg/L at pH 8.16, 0.39 mg/L at pH 8.38 showing the concentration increase with pH in the coagulation process. It was noteworthy that rapid increase was observed at pH above 8.0 next the rapid mixing. Therefore it is necessarily required to control pH below 7.8 in the coagulation process in order to meet drinking water quality standard of aluminum for high pH raw water into WTP, $CO_2$ injection could control pH successfully at about 7.3 even for the raw water of high pH above 8.0. In addition it was found that the pH control by $CO_2$ injection was significantly effective for coagulation in terms of turbidity removal, coagulant dosage, and residual dissolved aluminum concentration.

Hydrogen-storage Properties of CoO-Added Mg by Reactive Grinding (반응성분쇄에 의해 CoO를 첨가한 Mg의 수소저장특성)

  • Song, Myoungyoup;Lee, Dongsub
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.4
    • /
    • pp.321-326
    • /
    • 2003
  • We tried to improve the $H_2$-sorption properties of Mg by mechanical grinding under $H_2$ (reactive grinding) with CoO. The sample Mg+10wt.%CoO as prepared absorbs 1.25wt.% hydrogen and the activated sample absorbs 2.39wt.% hydrogen for 60min at 598K, $11.2barH_2$. The reactive grinding of Mg with CoO increases the $H_2$-sorption rates by facilitating nueleation(by creating defects on the surface of the Mg particles and by the additive), by making cracks on the surface of Mg particles and reducing the particle size of Mg and thus by shortening the diffusion distances of hydrogen atoms. Hydriding-dehydriding cycling increases the $H_2$-sorption rates by making cracks on the surface of Mg particles and reducing the particle size of Mg.

Hydrogen Storage Property Comparison of Pure Mg and Iron (III) Oxide-Added Mg Prepared by Reactive Mechanical Grinding

  • Song, Myoung Youp;Kwon, Sung Nam;Park, Hye Ryoung
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.5
    • /
    • pp.383-387
    • /
    • 2012
  • The activation of Mg-10 wt%$Fe_2O_3$ was completed after one hydriding-dehydriding cycle. Activated Mg-10 wt%$Fe_2O_3$ absorbed 5.54 wt% H for 60 min at 593 K under 12 bar $H_2$, and desorbed 1.04 wt% H for 60 min at 593 K under 1.0 bar $H_2$. The effect of the reactive grinding on the hydriding and dehydriding rates of Mg was weak. The reactive grinding of Mg with $Fe_2O_3$ is believed to increase the $H_2$-sorption rates by facilitating nucleation (by creating defects on the surface of the Mg particles and by the additive), by making cracks on the surface of Mg particles and reducing the particle size of Mg and thus by shortening the diffusion distances of hydrogen atoms. The added $Fe_2O_3$ and the $Fe_2O_3$ pulverized during mechanical grinding are considered to help the particles of magnesium become finer. Hydriding-dehydriding cycling is also considered to increase the $H_2$-sorption rates of Mg by creating defects and cracks and by reducing the particle size of Mg.

Hydrogen Storage Property of MgH2 Synthesized by Hydriding Chemical Vapor Deposition (Hydriding Chemical Vapor Deposition 방법으로 제조된 MgH2의 수소저장 특성)

  • Park, Kyung-Duck;Han, Jeong-Seb;Kim, Jin-Ho;Kim, Byung-Kwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.380-385
    • /
    • 2011
  • $MgH_2$ was synthesized by hydriding chemical vapor deposition (HCVD). In this study, we examined the hydrogen storage property of $MgH_2$ synthesized by HCVD. The results of pressure-composition-temperature (PCT) measurement showed that the HCVDed $MgH_2$ reversibly absorbed hydrogen as much as 6 wt%. Each hydrogenation rate was very greater than the conventional alloy methods. The reason was that the particle size made by HCVD was small as approximately 1 ${\mu}m$. The PCT of $MgH_2$ made by HCVD methode was similar to a commercial $MgH_2$. The ${\Delta}H$ and ${\Delta}S$ value are respectively -76.8 $kJ/mol{\cdot}H_2$ and -137.4 $kJ/mol{\cdot}H_2$. Mg made by HCVD methode was activated easily than commercial Mg. Also the initial reaction rate was faster than that of commercial $MgH_2$. 70% of the total storage were stored during 400s.

Evaluation of Hydrogenation Behavior of MgHx-Graphene Composites by Mechanical Alloying (기계적 합금화법으로 제조한 MgHx-Graphene 복합재료의 수소화 거동 특성)

  • Lee, Soo-Sun;Lee, Na-Ri;Kim, Kyeong-Il;Hong, Tae-Whan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.780-786
    • /
    • 2011
  • Mg hydride had high hydrogen capacity (7.6%), lightweight and low cost materials and it was promising hydrogen storage material at high temperature. However, commercial applications of the Mg hydride are currently hindered by its high absorption/desorption temperature, and very slow reaction kinetics. one of the approaches to improve the kinetic is $MgH_x$ intermixed with carbon. And it shows that carbon and carbon allotropes have a beneficial effect on hydrogen sorption in Mg. The graphene is a kind of carbon allotropes which is easily desorbed reaction at low temperatures because its reaction is exothermic. In this work, the effect of graphene concentration on the kinetics of Mg hydrogen absorption reaction was investigated. The $MgH_x$-Graphene composites has been prepared by hydrogen induced mechanical alloy (HIMA). The synthesized powder was characterized by XRD and simultaneous TG, DSC analysis. The hydrogenation behaviors were evaluated by using a sievert's type automatic PCT apparatus. In this research, results of kinetic profiles exhibit hydrogen absorption rate of $MgH_x$-5wt.% and 10wt.% graphene composite, as 1.25wt.%/ms, 10.33wt.%/ms against 0.88wt.%/ms for $MgH_x$ alone at 473K.

Isolation and Characterization of Insoluble Phosphate-Solubilizing Bacteria with Antifungal Activity (항진균능을 가진 불용성 인산 가용화 세균의 분리 및 특성)

  • Park, Ki-Hyun;Son, Hong-Joo
    • Korean Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.223-229
    • /
    • 2006
  • To develop multifunctional microbial inoculant, an insluble phosphate-solubilizing bacterium with antifungal activity was isolated from plant rhizospheric soil. On the basis of its morphological, cultural and physiological characteristics and Biolog analysis, this bacterium was identified as Pseudomonas fluorescens RAF15. P. fluorescens RAF15 showed antifungal activities against phytopathogenic fungi Botrytis cinerea and Rhizoctonia solani. The optimal medium composition and cultural conditions for the solubilization of insoluble phosphate by P. fluorescens RAF15 were 1.5% of glucose, 0.005% of urea, 0.3% $MgCl_2{\cdot}6H_2\;0.01%\;of\;MgSO_4{\cdot}7H_2O\;0.01%,\;of\;CaCl_2{\cdot}2H_2O$, and 0.05% of NaCl along with initial pH 7.0 at $30^{\circ}C$. The soluble phosphate production under optimum condition was 863 mg/L after 5 days of cultivation. The solubilization of insoluble phosphates was associated with a drop in the pH of the culture medium. P. fluorescens RAF15 showed resistance against different environmental stresses like $10-35^{\circ}C$ temperature, 1-4% salt concentration and pH 2-11 range. The strain produced soluble phosphate to the culture broth with the concentrations of 971-1121 mg/L against $CaHPO_4$, 791-908 mg/L against $Ca_3(PO_4){_2}$, and 844 mg/L against hydroxyapatite, respectively. However, the strain produced soluble phosphate to the culture broth with the concentrations of 15 mg/L against $FePO_4$, and 5 mg/L against $AlPO_4$, respectively.

Postprandial Ammonia Excretion and Oxygen Consumption Rates in Olive Flounder Paralichthys olivaceus Fed Two Different Feed Types According to Water Temperature Change

  • Lee, Jinhwan
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.4
    • /
    • pp.373-378
    • /
    • 2015
  • Postprandial ammonia excretion and oxygen consumption in olive flounder Paralichthys olivaceus fed two different feed types, moist pellet (MP) and expanded pellet (EP) diets, to satiation were determined at $12^{\circ}C$, $15^{\circ}C$, $20^{\circ}C$, and $25^{\circ}C$ for 48 h. The ammonia excretion and oxygen consumption rates increased with increasing water temperature. However, the postprandial times for the maximum rates of ammonia excretion and oxygen consumption were shortened from 12 h to 6 h after feeding with increasing water temperature. The ammonia excretion and oxygen consumption rates of the fish fed EP were significantly higher (P < 0.05) than those fed MP at 12 h post-feeding both for $12^{\circ}C$ and $15^{\circ}C$. The highest (P < 0.05) weight-specific ammonia excretion rates at $12^{\circ}C$ were observed in the fish fed EP and MP at $12.1mg\;NH_3-N\;kg^{-1}h^{-1}$ and $8.7mg\;NH_3-N\;kg^{-1}h^{-1}$, respectively, for 12 h and 9 h after feeding. The highest (P < 0.05) weight-specific oxygen consumption rates at $12^{\circ}C$ were observed in fish fed EP and MP at $116.4mg\;kg^{-1}h^{-1}$ and $101.0mg\;kg^{-1}h^{-1}$, respectively, for 12 h after feeding. The highest ammonia excretion rates at $25^{\circ}C$ in the fish fed EP and MP increased to $16.9mg\;NH_3-N\;kg^{-1}h^{-1}$ and $18.3mg\;NH_3-N\;kg^{-1}h^{-1}$, respectively, for 6 h after feeding. The highest (P < 0.05) weight-specific oxygen consumption rates at $25^{\circ}C$ were observed in fish fed EP and MP at $184.3mg\;O_2kg^{-1}h^{-1}$ and $197.3mg\;O_2kg^{-1}h^{-1}$, respectively. These data are valuable for the design of biofilters and development of effluent treatment technologies for the land-based flounder farms.