Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.5.383

Hydrogen Storage Property Comparison of Pure Mg and Iron (III) Oxide-Added Mg Prepared by Reactive Mechanical Grinding  

Song, Myoung Youp (Division of Advanced Materials Engineering, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University)
Kwon, Sung Nam (Department of Hydrogen and Fuel Cells, Graduate School, Chonbuk National University)
Park, Hye Ryoung (School of Applied Chemical Engineering, Chonnam National University)
Publication Information
Korean Journal of Metals and Materials / v.50, no.5, 2012 , pp. 383-387 More about this Journal
Abstract
The activation of Mg-10 wt%$Fe_2O_3$ was completed after one hydriding-dehydriding cycle. Activated Mg-10 wt%$Fe_2O_3$ absorbed 5.54 wt% H for 60 min at 593 K under 12 bar $H_2$, and desorbed 1.04 wt% H for 60 min at 593 K under 1.0 bar $H_2$. The effect of the reactive grinding on the hydriding and dehydriding rates of Mg was weak. The reactive grinding of Mg with $Fe_2O_3$ is believed to increase the $H_2$-sorption rates by facilitating nucleation (by creating defects on the surface of the Mg particles and by the additive), by making cracks on the surface of Mg particles and reducing the particle size of Mg and thus by shortening the diffusion distances of hydrogen atoms. The added $Fe_2O_3$ and the $Fe_2O_3$ pulverized during mechanical grinding are considered to help the particles of magnesium become finer. Hydriding-dehydriding cycling is also considered to increase the $H_2$-sorption rates of Mg by creating defects and cracks and by reducing the particle size of Mg.
Keywords
Hydrogen absorbing materials; mechanical alloying/milling; microstructure; X-ray diffraction; $Fe_2O_3$ addition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. S. Han and K. D. Park, Korean J. Met. Mater. 48, 1123 (2010).
2 A. Vose, Metal Hydrides, U.S. Patent 2,944,587 (1961).
3 J. J. Reilly and R. H. Wiswall, Inorg. Chem. 6, 2220 (1967).   DOI
4 J. J. Reilly and R. H. Wiswall, Inorg. Chem. 7, 2254 (1968).   DOI
5 M. H. Mintz, Z. Gavra, and Z. Hadari, J. Inorg. Nucl. Chem. 40, 765 (1978).   DOI   ScienceOn
6 M. Pezat, A. Hbika, B. Darriet, and P. Hagenmuller, Mater. Res. Bull. 14, 377 (1979).   DOI   ScienceOn
7 Q. Wang, J. Wu, M. Au, and L. Zhang, T. N. Veziro lu, J. B. Taylor (Eds.), Proceedings of the Fifth World Hydrogen Energy Conference (Hydrogen, Energy Progress V), vol. 3, Toronto, Canada, Pergamon, New York, July 1984, pp. 1279-1290.
8 E. Akiba, K. Nomura, S. Ono, and S. Suda, Int. J. Hydrogen Energy 7, 787 (1982).   DOI   ScienceOn
9 S. H. Hong, S. N. Kwon, and M. Y. Song, Korean J. Met. Mater. 49, 298 (2011).
10 K. I. Kim and T. W. Hong, Korean J. Met. Mater. 49, 264 (2011).   DOI   ScienceOn
11 M. Y. Song, S. N. Kwon, S. H. Hong and H. R. Park, Met. Mater. Int. 18, 279 (2012).   DOI   ScienceOn
12 B. Tanguy, J. L. Soubeyroux, M. Pezat, J. Portier, and P. Hagenmuller, Mater. Res. Bull. 11, 1441 (1976).   DOI   ScienceOn
13 F. G. Eisenberg, D. A. Zagnoli, and J. J. Sheridan III, J. Less-Common Met. 74, 323 (1980).   DOI   ScienceOn
14 M. Y. Song, J. Mater. Sci. 30, 1343 (1995).   DOI   ScienceOn
15 M. Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, Int. J. Hydrogen Energy 10, 169 (1985).   DOI   ScienceOn
16 M. Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, J. Less-Common Met. 131, 71 (1987).   DOI   ScienceOn
17 M. Y. Song, Int. J. Hydrogen Energy 20, 221 (1995).   DOI   ScienceOn
18 M. Y. Song, S. H. Hong, I. H. Kwon, S. N. Kwon, C. G. Park, and J. S. Bae, J. Alloys and Compounds 398(1-2), 283 (205).   DOI   ScienceOn
19 M. Y. Song, S. N. Kwon, D. R. Mumm, S. H. Baek, and S. H. Hong, Met. Mater. Int. 12, 525 (2006).   DOI   ScienceOn
20 M. Y. Song, I. H. Kwon, S. N. Kwon, C. G. Park, and J. S. Bae, Int. J. Hydrogen Energy 31, 43 (2006).   DOI   ScienceOn
21 M. Y. Song, D. S. Ahn, I. H. Kwon, and H. J. Ahn, Met. Mater. Int. 5, 485 (1999).   DOI