Browse > Article

Hydrogen-storage Properties of CoO-Added Mg by Reactive Grinding  

Song, Myoungyoup (Division of Advanced Materials Engineering, Research Center of Industrial Technology, Engineering Research Institute, Chonbuk National University)
Lee, Dongsub (Division of Advanced Materials Engineering, Research Center of Industrial Technology, Engineering Research Institute, Chonbuk National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.14, no.4, 2003 , pp. 321-326 More about this Journal
Abstract
We tried to improve the $H_2$-sorption properties of Mg by mechanical grinding under $H_2$ (reactive grinding) with CoO. The sample Mg+10wt.%CoO as prepared absorbs 1.25wt.% hydrogen and the activated sample absorbs 2.39wt.% hydrogen for 60min at 598K, $11.2barH_2$. The reactive grinding of Mg with CoO increases the $H_2$-sorption rates by facilitating nueleation(by creating defects on the surface of the Mg particles and by the additive), by making cracks on the surface of Mg particles and reducing the particle size of Mg and thus by shortening the diffusion distances of hydrogen atoms. Hydriding-dehydriding cycling increases the $H_2$-sorption rates by making cracks on the surface of Mg particles and reducing the particle size of Mg.
Keywords
$H_2$-sorption properties of Mg, CoO addition; Reactive grinding; Hydriding rates; Dehydriding rates; Particle-size distribution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Vose, Metal Hydrides, U.S Patent 2 Vol. 944, 1961, p. 587
2 J. J. Reilly and R. H. Wiswall, Inorg. Chem Vol. 6, No. 12, 1967; p. 2220   DOI
3 M. Pezat, B. Darriet and P. Hagenmuller, J. Less-Common Met Vol. 74, 1980, p. 427   DOI   ScienceOn
4 B. Tanguy, J. L. Soubeyroux, M. Pezat, J. Portier and P. Hagenmuller, Mater. Res. Bull, Vol. 11, 1976, p. 1441   DOI   ScienceOn
5 M.Y. Song, Int. J. Hydrogen Energy, Vol. 20, No. 3, 1995, p. 221-227   DOI   ScienceOn
6 M.Y. Song, E. I. Ivanov, B. Darriet, M. Pezat and P. Hagenmuller, J. Less-Common Met, Vol. 131, 1987, p. 71   DOI   ScienceOn
7 E. Akiba, K. Nomura, S. Ono and S. Suda, Int. J. Hydrogen Energy, Vol. 7, No. 10, 1982, p. 787-791   DOI   ScienceOn
8 J. J. Reilly and R. H. Wiswall Jr, Inorg. Chem, Vol. 7, No. 11, 1968; p. 2254-2256   DOI
9 M. H. Mintz, Z. Gavra and Z. Hadari, J. Inorg. Nucl. Chem., Vol. 40, No. 12, 1978, p. 765-768   DOI   ScienceOn
10 D. L. Douglass, Metall. Trans, A6, 1975, p. 2179
11 F. G. Eisenberg, D. A. Zagnoli and J. J. Sheridan B, J. Less-Conunon Met, Vol. 74, 1980, p. 323-331   DOI   ScienceOn
12 J. M. Boulet and N. Gerard, J. Less-Common Met., Vol. 89, No. 12, 1983, p. 151   DOI
13 M.Y. Song, D.S. Ahn, I.H. Kwon, H.J. Ahn, Metals and Materials International, Vol. 5, No. 5, 1999, p. 485   DOI
14 M. Pezat, A. Hbika, B. Darriet and P. Hagenmuller, French Anvar Patent 78 203 82, 1978, Mater. Res. Bull Vol. 14, 1979, p. 377
15 M. Y. Song, J. Mater. Sci 1995;30:1343   DOI   ScienceOn
16 Q. Wang, J. Wu, M. Au and L. Zhang, in Hydrogen Energy Progress V, Proceedings 5th World Hydrogen Energy Conference, Toronto, Canada, Vol. 3, July 1984, edited by T. N. Vezirolu and J. B. Taylor (Pergamon, New York) pp. 1279-1290
17 J-L. Bobet, E. Akiba, Y. Nakamura and B. Darriet, Iit. J. Hydrogen Energy 2000, Vol. 25, 2000, p. 987   DOI   ScienceOn
18 M.Y. Song, E.I. Ivanov, B. Darriet, M. Pezat and P. Hagenmuller, Int. J. Hydrogen Energy, Vol. 10, No. 3, 1985, p. 169-178   DOI   ScienceOn