• Title/Summary/Keyword: h-BN

Search Result 192, Processing Time 0.029 seconds

Protective effects of h-BN monolayer for silicene

  • Lee, Dong-Heon;Song, Ho-Cheol
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.396-399
    • /
    • 2015
  • 제일원리계산을 기반으로 실리센을 보호하는 h-BN의 효과에 대해 연구하였다. h-BN의 화학적 안정성으로 인하여, 실리센에 대한 기판과 불순물의 영향을 차단하여 자유지지 실리센의 성질을 유지하는 것을 보였다. 부분적으로 수소처리된 실리센 역시 h-BN 단일층 내에서 안정적으로 고유의 성질을 나타내는 것을 보였다.

  • PDF

High Thermal Conductivity h-BN/PVA Composite Films for High Power Electronic Packaging Substrate (고출력 전자 패키지 기판용 고열전도 h-BN/PVA 복합필름)

  • Lee, Seong Tae;Kim, Chi Heon;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.95-99
    • /
    • 2018
  • High thermal conductivity films with electrically insulating properties have a great potential for the effective heat transfer as substrate and thermal interface materials in high density and high power electronic packages. There have been lots of studies to achieve high thermal conductivity composites using high thermal conductivity fillers such alumina, aluminum nitride, boron nitride, CNT and graphene, recently. Among them, hexagonal-boron nitride (h-BN) nano-sheet is a promising candidate for high thermal conductivity with electrically insulating filler material. This work presents an enhanced heat transfer properties of ceramic/polymer composite films using h-BN nano-sheets and PVA polymer resins. The h-BN nano-sheets were prepared by a mechanical exfoliation of h-BN flakes using organic media and subsequent ultrasonic treatment. High thermal conductivities over $2.8W/m{\cdot}K$ for transverse and $10W/m{\cdot}K$ for in-plane direction of the cast films were achieved for casted h-BN/PVA composite films. Further improvement of thermal conductivity up to $13.5W/m{\cdot}K$ at in-plane mode was achieved by applying uniaxial compression at the temperature above glass transition of PVA to enhance the alignment of the h-BN nano-sheets.

Evaluation of Micro End-Milling Characteristics of AlN-hBN Composites Sintered by Hot-Pressing (열간가압소결에 의해 제조된 AlN-hBN 복합재료의 마이크로 엔드밀링 가공특성 평가)

  • Baek, Si-Young;Cho, Myeong-Woo;Seo, Tae-Il
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.390-401
    • /
    • 2008
  • The objective of this study is to evaluate various machining characteristics of AlN-hBN machinable ceramics in micro end-milling process for its further application. First, AlN based machinable ceramics with hBN contents in the range of 10 to 20vol% were prepared by hot-pressing. Material properties of the composites, such as relative density, Vickers hardness, flexural strength, Young's modulus and fracture toughness were measured and compared. Then, micro end-milling experiments were performed to fabricate micro channels using prepared system. During the process, cutting forces, vibrations and AE signals were measured and analyzed using applied sensor system. Machined micro channel shapes and surface roughness were measured using 3D non-contact type surface profiler. From the experimental results, it can be observed that the cutting forces, vibrations and AE signal amplitudes decreased with increasing hBN contents. Also, measured surface roughness and profiles were improved with increasing hBN contents. As a result of this study, optimum machining conditions can be determined to fabricate desired products with AlN-hBN machinable ceramics based on the experimental results of this research.

Evaluation of h-BN Nanoflakes/Polyimide Composites for a Triboelectric Nanogenerator (육방정질화붕소 나노플레이크/폴리이미드 복합체를 이용한 마찰전기 나노발전기 평가)

  • Park, Sunyoung;Byun, Doyoung;Cho, Dae-Hyun
    • Tribology and Lubricants
    • /
    • v.37 no.4
    • /
    • pp.125-128
    • /
    • 2021
  • A means of enhancing the performance of triboelectric nanogenerators (TENGs) is increasing the differences in work functions between contacting materials. Hexagonal boron nitride (h-BN) exhibits excellent mechanical properties and high chemical stability as well as a high work function. As a result, engineers in the field of energy harvesting have envisioned using h-BN in the electrification layer in TENGs. For the industrial application of h-BN in TENGs, large-scale production is necessary, and h-BN is generally exfoliated and dispersed in various solvents. In this study, we evaluate the performance of a TENG with h-BN nanoflakes in the polyimide (PI) layer. To synthesize a PI composite containing h-BN nanoflakes, h-BN powders are exfoliated and dispersed in poly(amic acid) (PAA), which is the precursor of PI. Then, h-BN dispersion is spin-coated onto the PI film and cured for 2 h under 300℃. This composite material can then be used for the electrification layer in TENGs. Below the electrification layer, an aluminum foil is placed and used as an electrode. When the contact and separation processes with polyethylene terephthalate are repeated, the fabricated TENG shows a maximum power density of 190.8 W/m2. This study shows that h-BN is a promising material for enhancing the performance of the electrification layer in TENGs.

Experimental Investigations on Micro End-milling Cutting Characteristics Comparison and Tool Wear Behavior of AlN-hBN Composites Sintered by Hot-pressing (열간가압소결에 의해 제조된 AlN-hBN 복합재료의 마이크로 엔드밀링 절삭특성 비교와 공구마모에 관한 실험적 연구)

  • Beck, Si-Young;Shin, Bong-Cheol;Cho, Myeong-Woo;Cho, Won-Seung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.104-111
    • /
    • 2008
  • The objective of this study is to evaluate micro end-milling characteristics and tool wear behavior of AlN-hBN composites. First, AlN based composites with hBN contents in the range of 10 to 20vol% were prepared by hot-pressing. Vickers hardness and flexural strength of the prepared composite specimens were measured and compared according to the vol% of hBN variations. Then, cutting force variations were measured and analyzed using a tool dynamometer during the micro end-milling experiments; and machined surface shapes and roughness were investigated using a 3D non-contact type surface profiler. After micro end-milling, worn tools were investigated using a tool microscope and SEM images. From the experimental results, it can be observed that the cutting forces decreased, and surface qualities were improved with increasing hBN contents. At low content of hBN, tool chipping was observed; and tool wear rate decreased with increasing hBN contents. The results of this study insist that proper machining conditions, including tool wear behavior investigation, should be determined for the micro end-milling of AlN-hBN composites for its further application.

Boron Nitride Dispersed Nanocomposites with High Thermal Shock Resistance

  • Kusunose, T.;Sekino, T.;Choa, Y.H.;Nakayama, T.;Niihara, K.
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.174-178
    • /
    • 2001
  • The microstructure and mechanical properties of $Si_3N_4/BN $nanocomposites synthesized by chemical processing were investigated. The nanocomposites containing 15 vol% hexagonal BN (h-BN) were fabricated by hot-pressing $\alpha-Si_3N_4$powders covered with turbostratic BN (t-BN). The t-BN coating on $\alpha-Si_3N_4$particles was prepared by heating $\alpha-Si_3N_4$ particles covered with a mixture of boric acid and urea in hydrogen gas. TEM observations of this nanocomposite revealed that nano-sized h-BN particles were homogeneously dispersed within $Si_3N_4$grains as well as at grain boundaries. The strength and thermal shock resistance were significantly improved in comparison with the $Si_3N_4/BN$ microcomposites.

  • PDF

Synthesis of Boron-Nitride Film by Plasma Assisted Chemical Vapor Deposition Using $BCl3-NH3-Ar$ Mixed Gas ($BCl3-NH3-Ar$계의 플라즈마화학증착공정을 이용한 질화붕소막의 합성)

  • 박범수;백영준;은광용
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.3
    • /
    • pp.249-256
    • /
    • 1997
  • The effect of process parameter of plasma assisted chemical vapor deposition (PACVD) on the variation of the ratio between cubic boron nitride (c-BN) and hexagonal boron nitride (h-BN) in the film was in-vestigated. The plasma was generated by electric power with the frequency between 100 and 500 KHz. BCl3 and NH3 were used as a boron and nitrogen source respectively and Ar and hydrogen were added as a car-rier gas. Films were composed of h-BN and c-BN and its ratio varied with the magnitude of process parameters, voltage of the electric power, substrate bias voltage, reaction pressure, gas composition, sub-strate temperature. TEM observation showed that h-BN phase was amorphous while crystalline c-BN par-ticle was imbedded in h-BN matrix in the case of c-BN and h-BN mixed film.

  • PDF

Investigation of residual stress in cBN thin films deposited with hydrogen

  • Go, Ji-Seon;Kim, Hong-Seok;Park, Jong-Geuk;Lee, Uk-Seong;Baek, Yeong-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.43-43
    • /
    • 2011
  • BN(Boron Nitride)은 온도와 압력 조건에 따라 안정한 상이 sp3 결합인 cubic 구조의 BN(cBN)과 sp2 결합인 hexagonal 구조의 BN(hBN or tBN)으로 나뉘는데, 이 중 cBN은 우수한 기계적, 물리적, 화학적 특성으로 인해 박막 분야에서 매우 높은 응용가능성을 지니고 있다. 하지만 cBN 박막의 합성과정에서의 필수적인 요소인 높은 압축잔류응력은 cBN을 응용분야에 적용하는데 있어 한계점으로 계속 남아 있었다. 그동안 이러한 잔류응력을 감소시키기 위해 열처리, 이온 주입, 제 3의 물질 첨가 등 다양한 관점에서 접근한 연구들이 진행되어 왔다. 본 연구에서는 cBN 합성과정에서 잔류응력을 감소시키기 위한 방법으로 수소를 첨가하였고, 그에 따른 잔류응력의 변화를 분석하고, 그 과정에서 잔류응력의 형성에 수소가 어떤 역할을 하는지 규명하고자 하였다. cBN 박막은 hBN을 target으로한 unbalanced magnetron sputtering를 사용하여, 실리콘 wafer 위에 합성하였다. 증착압력은 1.3mTorr로, 수소의 첨가량을 증가시키며 잔류응력과 cBN fraction을 관찰하였다. cBN fraction은 FTIR로 분석하였고, 잔류응력은 실리콘 strip의 in-situ 곡률측정법으로 계산하였다. cBN 박막의 조성과 구조 분석, 수소의 역할 규명을 위해 RBS 및 HRTEM을 이용하였다.

  • PDF

The Effect of Substrate Bias Voltage during the Formation of BN film by R. F. Sputtering Method (RF 스퍼터링법에 의한 BN박막 증착시 기판 바이어스전압의 영향에 관한 연구)

  • 이은국;김도훈
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.2
    • /
    • pp.93-99
    • /
    • 1996
  • In this work BN thin films were deposited on Si substrate by R. F. sputtering method at $200^{\circ}C$ and in Ar + $N_2$ mixed gas atmosphere. In order to investigate the effect of ion bombardment on substrate for c-BN bonding, substrate bias voltage was applied. The optimum substrate bias voltage for c-BN bonding was determined by FTIR analysis on specimens which were deposited with various bias voltages. Then BN thin film was deposited with this optimum condition and its phase, morphology, chemical composition, and refractive index were compared with those of BN film which was deposited without bias voltage. FTIR results showed that BN films deposited with substrate bias voltage were composed of mixed phases of c-BN and h-BN, while those deposited without bias voltage were h-BN only. When pure Ar gas was used for sputtering gas, BN films were delaminated easily from substrate in air, while when 10% $N_2$ gas was added to the sputtering gas, although c-BN specific infrared peak was reduced, delamination did not occur. GXRD and TEM results showed that BN films were amorphous phases regardless of substrate bias voltage, and AES results showed that the chemical compositions of B/N were about 1.7~1.8. The refractive index of BN film deposited with bias voltage was higher than that without bias voltage. The reason is believed to be the existence of c-BN bonding in BN film and the higher density of film that deposited with the substrate bias voltage.

  • PDF

Mechanical Properties and End-milling Characteristic of AIN-hBN Based Machinable Ceramics (AIN-hBN계 머시너블 세라믹스의 기계적 특성 및 엔드밀링 가공성 평가)

  • Beck, Si-Young;Cho, Myeong-Woo;Cho, Won-Seung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.75-81
    • /
    • 2008
  • In this study, machining characteristics of AIN-hBN composites were evaluated in end-milling process. As a first step, AIN-hBN composite specimens with various hBN contents were prepared using hot press method. Material properties of the composites, such as relative density, Young's modulus and fracture toughness, were measured and compared. Then, a series of end-milling experinients were performed under various cutting conditions by changing cutting speed, depth-of-cut and feed rate. Cutting force variations were measured using a tool dynamometer during the cutting experiments. Machined surfaces of the specimens were observed using SEM and a surface pro filer to investigate the surface integrity changes. The cutting force decreased with an increases of hBN content. The cutting process was almost impossible for monolithic AIN, owing to severe chipping. In contrast, at high content of hBN, surface damage and chipping decreased, and better surface roughness can be obtained.