Browse > Article
http://dx.doi.org/10.6117/kmeps.2018.25.4.095

High Thermal Conductivity h-BN/PVA Composite Films for High Power Electronic Packaging Substrate  

Lee, Seong Tae (Nano Materials and Convergence Center, Korea Institute of Ceramic Engineering and Technology)
Kim, Chi Heon (Nano Materials and Convergence Center, Korea Institute of Ceramic Engineering and Technology)
Kim, Hyo Tae (Nano Materials and Convergence Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of the Microelectronics and Packaging Society / v.25, no.4, 2018 , pp. 95-99 More about this Journal
Abstract
High thermal conductivity films with electrically insulating properties have a great potential for the effective heat transfer as substrate and thermal interface materials in high density and high power electronic packages. There have been lots of studies to achieve high thermal conductivity composites using high thermal conductivity fillers such alumina, aluminum nitride, boron nitride, CNT and graphene, recently. Among them, hexagonal-boron nitride (h-BN) nano-sheet is a promising candidate for high thermal conductivity with electrically insulating filler material. This work presents an enhanced heat transfer properties of ceramic/polymer composite films using h-BN nano-sheets and PVA polymer resins. The h-BN nano-sheets were prepared by a mechanical exfoliation of h-BN flakes using organic media and subsequent ultrasonic treatment. High thermal conductivities over $2.8W/m{\cdot}K$ for transverse and $10W/m{\cdot}K$ for in-plane direction of the cast films were achieved for casted h-BN/PVA composite films. Further improvement of thermal conductivity up to $13.5W/m{\cdot}K$ at in-plane mode was achieved by applying uniaxial compression at the temperature above glass transition of PVA to enhance the alignment of the h-BN nano-sheets.
Keywords
Boron nitride; nano-sheets; polyvinyl alcohol; composites; packaging substrate;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Miric, and P. Dietric, "Inorganic substrates for power electronics applications" Heraeus Deutschland GmbH and Co., KG 63450 Hanau Germany, (March 2015) from https://www.heraeus.com
2 H. E. Dehaghani, and M. Nazempour, "Smart Nanoparticles Technology", Abbass Hashim, Eds., pp.520-540, IntechOpen, London (2012).
3 H. T. Kim, "High Thermal Conductivity Ceramics and Their Composites for Thermal Management of Integrated Electronic Packaging", in Heat Transfer-Models, Methods and Applications, Konstantin Volkov, Eds., pp.333-359, IntechOpen, London (2018).
4 H. W. Shin, H. S. Lee, J. H. Bang, S. H. Yoo, S. B. Jung, and K. D. Kim, "Variation of Thermal Resistance of LED Module Embedded by Thermal Via", J. Microelectr. Packag. Soc., 17(4), 95 (2010).
5 J. G. Kim, J. Y. Jeong, J. H. Ju, S. H. Park, and Y. R. Cho, "Thermal Properties of Two-Layered Materials Composed of Dielectric Layer on Metallic Substrate along the Thickness Direction", J. Microelectron. Packag. Soc., 23(4), 87 (2016).   DOI
6 S. Kemaloglu, G. Ozkoc, and A. Aytac, "Thermally Conductive Boron Nitride/SEBS/EVA Ternary Composites: Processing and Characterization", Polymer Composites, 31(8), 1398 (2010).   DOI
7 J. P. Hong, S. W. Yoon, T. S. Hwang, Y. K. Lee. S. H. Won, and J. D. Nam, "Interphase control of boron nitride/epoxy composites for high thermal conductivity", Korea-Australia Rheology Journal, 22(4), 259 (2010).
8 Y. Xu, and D. D. L. Chung, "Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxymatrix composites by particle surface treatments", Composites Interfaces, 7(4), 243 (2000).   DOI
9 X. Wang, A. Pakdel, J. Zhang, Q. Weng, T. Zhai, C. Zhi, D. Golberg, and Y. Bando, "Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties", Nanoscale Research Letters, 7(1), 662 (2012).   DOI
10 W. L. Song. P. Wang, L. Cao, A. Anderson, M. J. Mezani, A. J. Farr, and Y. P. Sun, "Polymer/boron nitride nanocomposite materials for superior thermal transport performance", Angew. Chem. Int. ed., 51(26), 6498 (2012).   DOI
11 Z. Lin, A. Mcnamara, Y. Liu, K. S. Moon, and C. P. Wong, "Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation", Composites Science and Technology, 90, 123 (2014).   DOI
12 H. L. Hong, J. U. Kim, and T. I. Kim, "Effective Assembly of Nano-Ceramic Materials for High and Anisotropic Thermal Conductivity in a Polymer Composite", Polymers, 9(9), 413 (2017).   DOI
13 C. Pan, J. Zhang, K. Kou, Y. Zhang, and G. Wu, "Investigation of the through-plane thermal conductivity of polymer composites with in-plane oriented hexagonal boron nitride", Int. J. Heat and mass Transfer, 120, 1 (2018).   DOI
14 Z. Lin, Y. Liu, S. Raghavan, K. S. Moon, S. K. Sitaraman, and C. P. Wong, "Magnetic Alignment of Hexagonal Boron Nitride Platelets in Polymer Matrix: Toward High Performance Anisotropic Polymer Composites for Electronic Encapsulation", ACS Appl. Mater. Interfaces., 5(15), 7633 (2013).   DOI