• Title/Summary/Keyword: gyroscope free

Search Result 13, Processing Time 0.122 seconds

Fuzzy Inference System for Data Calibration of Gyroscope Free Inertial Navigation System (Gyroscope Free 관성 항법 장치의 데이터 보정을 위한 퍼지 추론 시스템)

  • Kim, Jae-Yong;Kim, Jung-Min;Woo, Seung-Beom;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.518-524
    • /
    • 2011
  • This paper presents a study on the calibration of accelerometer data in the gyroscope free inertial navigation system(GFINS) using fuzzy inference system(FIS). The conventional INS(inertial navigation system) which can measure yaw rate and linear velocity using inertial sensors as the gyroscope and accelerometer. However, the INS is difficult to design as small size and low power because it uses the gyroscope. To solve the problem, the GFINS which does not have the gyroscope have been studied actively. However, the GFINS has cumulative error problem still. Hence, this paper proposes Fuzzy-GFINS which can calibrate the data of an accelerometer using FIS consists of two inputs that are ratio between linear velocity of the autonomous ground vehicle(AGV) and the accelerometer and ratio between linear velocity of the encoders and the accelerometer. To evaluate the proposed Fuzzy-GFINS, we made the AGV with Mecanum wheels and applied the proposed Fuzzy-GFINS. In experimental result, we verified that the proposed method can calibrate effectively data of the accelerometer in the GFINS.

The Gyroscope Positioning and North Finding System (자이로스코프 위치시스템과 지북시스템)

  • Park, Sok-Chu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.291-294
    • /
    • 2004
  • There are many position fixing systems in the world from ancient times. But the principles are to compare the position to want to know with the known position already. The position finding system which is not restricted by weather condition and/or electronic apparatus has been sought. The best system is the GPS as far. But the system has the fatal faults as follows; 1. to depend on satellite's accuracy, 2. not to use underwater. This paper is to investigate theoretically position fixing and north finding by using free gyroscope. This paper introduce a position fixing and north finding method by measuring inclination of 2 free gyroscopes. And this system does not depend on the weather condition and underwater condition. What is more, it could use on the planets, if the gravity exits.

  • PDF

Design of the Gyroscope Torquer using Finite Element Method (유한요소법을 이용한 자이로스코프 토커의 설계)

  • Yoon, Joong-Seock;Won, Jong-Su
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.53-56
    • /
    • 1987
  • Gyroscope is a key sensor for inertial navigation system (INS) which is a navigational instrument necessary to guide and control a free vehicle, and an important instrument for defense, aeronautical, and space industries that is and will be actively involved. In this study, design parameters, scale factor and linearity, of torquer which is one of the components of two degree of freedom dynamically tuned gyroscope (DTG) are presented. The magnetic circuit of torquer is so complicated that it is difficult to analyze it with analytic method. Thus these parameters are calculated by using finite element method with analysis of magnetic vector potential for axisymmetric 3-dimension magnetic field.

  • PDF

Error Aalysis of Mechanical Parts and Dynamic Balancing in A Dynamically Tuned Gyroscope (동조자이로스코프의 기계부 오차 해석 및 동적밸런싱)

  • J.O. Young;C.G. Ahn;Lee, J.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.13-22
    • /
    • 1997
  • Strapdown inertial navigation system(SDINS) is a navigational instruments necessary to guide and con- trol a free vehicle. In this study, an error analysis of mechanical parts is carried out for manufacturing a dynamically tuned gyroscope. The errors usually come from the tolerance in machining and assembly. In the error analysis, a criterion to be considered during designing and manufacturing is proposed by quanti- tatively analyzing the effect of DTG performance by tolerances. The theory of dynamic balancing is deduced and unbalance is reduced through experiment.

  • PDF

A Study on Position Fixing by Free Gyroscopes (프리 자이로스코프를 이용한 위치결정에 관한 연구)

  • 박석주;정태권
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.117-120
    • /
    • 2004
  • This paper is to investigate theoretically position fixing by using gyroscopic inertia of free gyroscope. with respect to a reference position or starting point, the changes of the inclination angle of the spin axes and the elapsed time are taken a measurement. By using the two basic factors like changes of angles a position is fixed.

  • PDF

A Calibration Method for Six-Accelerometer INS

  • Hung Chao-Yu;Lee Sou-Chen
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.615-623
    • /
    • 2006
  • The gyroscope free strap-down INS is composed only of accelerometers. Any gyroscope free INS navigation error is deeply affected by the accuracy of the sensor bias, scale factor, orientation and location error. However these parameters can be found by calibration. There is an important research issue about a multi-position calibration method in this paper. It provides a novel method to find the error parameters for the six-accelerometer INS. A superior simulation is shown that the multi-position calibration can find the specifications of a six-accelerometer INS in laboratory. From these parameters the six-accelerometer INS could apply in realistic navigation.

Path-tracking of free-ranging AGV using encorders and gyroscope (엔코더와 자이로스코프를 사용한 무궤도 AGV의 위치 제어)

  • Choi, Kwang-Sup;Park, Tae-Hyoung
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.327-328
    • /
    • 2007
  • This paper is to develop the path-tracking of free-ranging AGV(Autonomous Guided Vehicle). Encorders are used to trace the location of the AGV. A gyroscope is used to complement encorders that have the error accumulation problem by increasing the distance covered. A sensor fusion technique is applied to correct the error. The path of the AGV is controlled by kinematics and PID which is obtained the data from the sensor fusion. Experimental results are presented to verify the efficiency of proposed method.

  • PDF

A Study on the Fabrication and Analysis of Mechanical Parts of a Dynamically Tuned Gyroscope (동조자이로스코우프 기계부의 제작 및 해석에 관한 연구)

  • 안창기;윤종욱;이장무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.930-937
    • /
    • 1994
  • Straodown intertial navigation system(SDINS) is a navigational instrument necessary to guide and control a free vehicle. Dynamically Tuned Gyroscope(DTG) which is widely applied to SDINS convers a wide dynamic range and is simple and small. In study, the analysis of mechanical parts or sensor parts and research of balancing is performed for manufacturing a DTG. In error analysis the criterion considered during designing and manufacturing is established by quantitatively anayzing the effect of DTG performance by tolerance. And the theory of dynamic balancing is derived and unbalance is reduced through experiment. And the stiffness of flexure is verified by tuning experiment.

  • PDF

Extended Kalman Filter Based GF-INS Angular Velocity Estimation Algorithm

  • Kim, Heyone;Lee, Junhak;Oh, Sang Heon;Hwang, Dong-Hwan;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.3
    • /
    • pp.107-117
    • /
    • 2019
  • When a vehicle moves with a high rotation rate, it is not easy to measure the angular velocity using an off-the-shelf gyroscope. If the angular velocity is estimated using the extended Kalman filter in the gyro-free inertial navigation system, the effect of the accelerometer error and initial angular velocity error can be reduced. In this paper, in order to improve the navigation performance of the gyro-free inertial navigation system, an angular velocity estimation method is proposed based on an extended Kalman filter with an accelerometer random bias error model. In order to show the validity of the proposed estimation method, angular velocities and navigation outputs of a vehicle with 3 rev/s rotation rate are estimated. The results are compared with estimates by other methods such as the integration and an extended Kalman filter without an accelerometer random bias error model. The proposed method gives better estimation results than other methods.

A theoretical calculation of coupled free, transverse vibration of the multi-supported shaft system by the finite element method (유한요소법에 의한 다점지지축계의 연성자유횡진동 계산에 관한 연구)

  • 유광택;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.41-49
    • /
    • 1986
  • With the trend towards high propulsive level, increasing ship's dimensions and heavier shaft systems supported by the hull structure of relatively stiffness in modern ships, transverse vibrations of propulsion shaft system have become one of the problems that should be predicted in the early design stage. Regarding transverse vibrations, coupling terms such as oilfilm, gyroscope and hydrodynamic effect of the propeller exist between the vertical and horizontal vibration, furthermore for the shaft system with strut and bossing its physical properties incorporated with hull structure must be considered. In order to predict the transverse vibratory condition of the propulsion shaft and take some appropriate countermeasures, it is necessary to make a fairly strict estimation of the vibratory behaviours of it. In this paper, theoretical approach using the finite element method is investigated to calculate natural frequencies and vibration modes for coupled free transverse vibrations of shaft system in two planes. Based on the method investigated a digital computer program is developed and is applied to calculate the above-mentioned vibrations of an experimental model shaft system. The results of the calculation are compared with those of the experimental measurements and they show an acceptable agreement.

  • PDF