• Title/Summary/Keyword: gyro sensor

Search Result 368, Processing Time 0.028 seconds

Extension of Measurement Range of Gyro Sensor Data (누적형 자이로 센서 데이터의 최대측정영역 확장 방법)

  • Oh, Shi-Hwan;Kim, Jin-Hee
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.39-48
    • /
    • 2012
  • In case a measurement output of gyro sensor is an accumulated angle counts, it is usually provided as a binary bit counter which is allowed to roll-over at its maximum or minimum value. And it is a well known fact that the roll-over behavior restricts the measurement range of the processed sensor output below the actual measurable range of sensor hardware itself. In this study, a conventional sensor data processing method for a gyro with an accumulated angle output is introduced. And also, an improved method which can extend the processed output range over the conventional one is proposed. It is also derived that the increased range depends on the variation speed of a input signal. Finally, the derived equations and the performance of the proposed algorithm are verified using a computer simulation.

Improvement of Dynamic Respiration Monitoring Through Sensor Fusion of Accelerometer and Gyro-sensor

  • Yoon, Ja-Woong;Noh, Yeon-Sik;Kwon, Yi-Suk;Kim, Won-Ki;Yoon, Hyung-Ro
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.334-343
    • /
    • 2014
  • In this paper, we suggest a method to improve the fusion of an accelerometer and gyro sensor by using a Kalman filter to produce a more high-quality respiration signal to supplement the weakness of using a single accelerometer. To evaluate our proposed algorithm's performance, we developed a chest belt-type module. We performed experiments consisting of aerobic exercise and muscular exercises with 10 subjects. We compared the derived respiration signal from the accelerometer with that from our algorithm using the standard respiration signal from the piezoelectric sensor in the time and frequency domains during the aerobic and muscular exercises. We also analyzed the time delay to verify the synchronization between the output and standard signals. We confirmed that our algorithm improved the respiratory rate's detection accuracy by 4.6% and 9.54% for the treadmill and leg press, respectively, which are dynamic. We also confirmed a small time delay of about 0.638 s on average. We determined that real-time monitoring of the respiration signal is possible. In conclusion, our suggested algorithm can acquire a more high-quality respiration signal in a dynamic exercise environment away from a limited static environment to provide safer and more effective exercises and improve exercise sustainability.

4WS Unmanned Vehicle Lateral Control Using PUS and Gyro Coupled by Kalman Filtering

  • Lee, Kil-Soo;Park, Hyung-Gyu;Lee, Man-Hyung
    • Journal of Navigation and Port Research
    • /
    • v.35 no.2
    • /
    • pp.121-130
    • /
    • 2011
  • The localization of vehicle is an important part of an unmanned vehicle control problem. Pseudolite ultrasonic system(PUS) is the method to find an absolute position with a high accuracy by using ultrasonic sensor. And Gyro is the inertial sensor to measure yaw angle of vehicle. PUS can be able to estimate the position of mobile robot precisely, in which errors are not accumulated. And Gyro is a more faster measure method than PUS. In this paper, we suggest a more accuracy method of calculating PUS which is numerical analysis approach named Newtonian method. And also propose the fusion method to increase the accuracy of estimated angle on moving vehicle by using PUS and Gyro integrated system by Kalman filtering. To control the 4WS unmanned vehicle, the trajectory following algorithm is suggested. And the new concept arbitration of goal controller is suggested. This method considers the desirability function of vehicle state. Finally, the performances of Newtonian method and designed controller were verified from the experimental results with the 4WS vehicle scaled 1/10.

A Study on the Errors in the Free-Gyro Positioning and Directional System (자유자이로 위치 및 방위시스템의 오차에 관한 연구)

  • Jeong, Tae-Gweon
    • Journal of Navigation and Port Research
    • /
    • v.37 no.4
    • /
    • pp.329-335
    • /
    • 2013
  • This paper is to develop the position error equations including the attitude errors, the errors of nadir and ship's heading, and the errors of ship's position in the free-gyro positioning and directional system. In doing so, the determination of ship's position by two free gyro vectors was discussed and the algorithmic design of the free-gyro positioning and directional system was introduced briefly. Next, the errors of transformation matrices of the gyro and body frames, i.e. attitude errors, were examined and the attitude equations were also derived. The perturbations of the errors of the nadir angle including ship's heading were investigated in each stage from the sensor of rate of motion of the spin axis to the nadir angle obtained. Finally, the perturbation error equations of ship's position used the nadir angles were derived in the form of a linear error model and the concept of FDOP was also suggested by using covariance of position error.

A Study on Particular Abnormal Gait Using Accelerometer and Gyro Sensor (가속도센서와 각속도센서를 이용한 특정 비정상보행에 관한 연구)

  • Heo, Geun-Sub;Yang, Seung-Han;Lee, Sang-Ryong;Lee, Jong-Gyu;Lee, Choon-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1199-1206
    • /
    • 2012
  • Recently, technologies to help the elderly or disabled people who have difficulty in walking are being developed. In order to develop these technologies, it is necessary to construct a system that gathers the gait data of people and analysis of these data is also important. In this research, we constructed the development of sensor system which consists of pressure sensor, three-axis accelerometer and two-axis gyro sensor. We used k-means clustering algorithm to classify the data for characterization, and then calculated the symmetry index with histogram which was produced from each cluster. We collected gait data from sensors attached on two subjects. The experiment was conducted for two kinds of gait status. One is walking with normal gait; the other is walking with abnormal gait (abnormal gait means that the subject walks by dragging the right leg intentionally). With the result from the analysis of acceleration component, we were able to confirm that the analysis technique of this data could be used to determine gait symmetry. In addition, by adding gyro components in the analysis, we could find that the symmetry index was appropriate to express symmetry better.

A Triple Nested PID Controller based on Sensor Fusion for Quadrotor Attitude Stabilization (쿼드로터 자세 안정화를 위한 센서융합 기반 3중 중첩 PID 제어기)

  • Cho, Youngwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.871-877
    • /
    • 2018
  • In this paper, we propose a triple nested PID control scheme for stable hovering of a quadrotor and propose a complementary filter based sensor fusion technique to improve the performance of attitude, altitude and velocity measurement. The triple nested controller has a structure in which a double nested attitude controller that has the angular velocity PD controller in inner loop and the angular PI controller in outer loop, is nested in a velocity control loop to enable stable hovering even in the case of disturbance. We also propose a sensor fusion technique by applying a complementary filter in order to reduce the noise and drift error included in the acceleration and gyro sensor and to measure the velocity by fusing image, gyro, and acceleration sensor. In order to verity the performance, we applied the proposed control and measurement scheme to hovering control of quadrotor.

A Study on Direction Detection in Location-based System without Gyro Sensor (자이로 센서 없는 위치기반 시스템에서 방향 탐지에 관한 연구)

  • Youm, Dong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.503-504
    • /
    • 2018
  • 전 세계 스마트폰 보급량은 지속적으로 증가하고 있으며 고급형 스마트폰 보다는 센서를 제거해 원가를 절감한 보급형 스마트폰이 더 많이 보급될 것으로 예측되고 있다. 본 논문에서는 자이로 센서가 없을 때의 위치 기반의 방향 탐지 방법으로써 위치를 기반으로 한 벡터를 이용하여 방향을 탐지하고, 높이 축에 대한 제한, 위치 변화 없는 회전에 대한 제한 등의 제약들을 개선할 후속 연구의 방향성을 제시한다.

  • PDF

Method of Sensitivity Configuration of Gyro Sensor for Virtual Camera inside 3D Mobile Game (3D 모바일 게임 내의 가상카메라를 위한 자이로 센서의 민감도 설정 방법)

  • Baek, Insik;Kim, Jong-Kook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.1020-1022
    • /
    • 2014
  • In this paper, we present a method for smartphone users to have a better user experience when playing 3D mobile games using the gyro sensor. We designed the rotation of the virtual camera in the game world to be proportional to the real-world's rotation. We have also made the sensitivity configuration possible for users to manipulate.

Automatic Brake System For Stroller Using Gyro Sensor (자이로 센서를 이용한 유모차 자동 브레이크 시스템)

  • Min, Baek-Gyu;Parkg, Kun-Woo;Park, Jung-Bae;Kim, Hyun-A;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.599-606
    • /
    • 2017
  • In this paper, the automatic control system of the stroller brake was designed and manufactured to reduce the safety accident of the stroller. The ultrasonic sensors are used to determine whether the handle of the driver's hand is touching or not, and the gyro sensor is designed to detect the current tilt of the baby carriage. If the next driver's hand is not recognized and the tilt exceeds a certain angle, the servo motor is activated and the hydraulic brake is operated to prevent the accident on the downhill road. Finally, in this paper, a smart phone-based application was developed to make the remote control of the brake possible.

A Study on the Errors In the Free-Gyro Positioning System (I)

  • Jeong Tae-Gweon
    • Journal of Navigation and Port Research
    • /
    • v.29 no.7
    • /
    • pp.611-614
    • /
    • 2005
  • This paper is to develop the position error equation of in the free-gyro positioning system by using two free gyros. First, the determination of a position is analyzed on the ellipsoid of the Earth and the type of the errors is defined Finally the position error equation is introduced and developed, based on the definition of the type of errors which may be involved in the FPS.