• Title/Summary/Keyword: gyro drift

Search Result 41, Processing Time 0.026 seconds

Sensitivity Optimization of MEMS Gyroscope for Magnet-gyro Guidance System (자기-자이로 유도 장치를 위한 MEMS형 자이로의 민감도 최적화)

  • Lee, Inseong;Kim, Jaeyong;Jung, Eunkook;Jung, Kyunghoon;Kim, Jungmin;Kim, Sungshin
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • This paper presents a sensitivity optimization of a MEMS (microelectromechanical systems) gyroscope for a magnet-gyro system. The magnet-gyro system, which is a guidance system for a AGV (automatic or automated guided vehicle), uses a magnet positioning system and a yaw gyroscope. The magnet positioning system measures magnetism of a cylindrical magnet embedded on the floor, and AGV is guided by the motion direction angle calculated with the measured magnetism. If the magnet positioning system does not measure the magnetism, the AGV is guided by using angular velocity measured with the gyroscope. The gyroscope used for the magnet-gyro system is usually MEMS type. Because the MEMS gyroscope is made from the process technology in semiconductor device fabrication, it has small size, low-power and low price. However, the MEMS gyroscope has drift phenomenon caused by noise and calculation error. Precision ADC (analog to digital converter) and accurate sensitivity are needed to minimize the drift phenomenon. Therefore, this paper proposes the method of the sensitivity optimization of the MEMS gyroscope using DEAS (dynamic encoding algorithm for searches). For experiment, we used the AGV mounted with a laser navigation system which is able to measure accurate position of the AGV and compared result by the sensitivity value calculated by the proposed method with result by the sensitivity in specification of the MEMS gyroscope. In experimental results, we verified that the sensitivity value through the proposed method can calculate more accurate motion direction angle of the AGV.

Analysis of Transfer Gyro Calibration Error Budget (전이궤도 자이로보정 오차버짓 해석)

  • Park, Keun-Joo;Yang, Koon-Ho;Yong, Ki-Lyuk
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.36-43
    • /
    • 2010
  • A GEO satellite launched by Arian 5 ECA launcher will be located in a transfer orbit where it requires several Apogee burn maneuvers to reach the target orbit. To obtain the required performance of Apogee burn maneuvers, a calibration of gyro drift error needs to be performed before each maneuver. In this paper, a unique gyro calibration scheme which is applied to COMS is described and the calibration error budget analysis is performed.

Dynamic Models of Hemispherical Resonator Gyros and Tests of Basic Control Characteristics (반구형 공진 자이로의 동작모델과 기초 제어특성 실험)

  • Jin, Jaehyun;Choi, Hong-Taek;Yoon, Hyungjoo;Kim, Dongguk;Sarapulov, Sergii
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.947-954
    • /
    • 2013
  • This article focuses on a hemispherical resonator gyro driven by the Coriolis effect. The operational principle of resonator gyros and mathematical models are introduced. These models are useful to explain the behavior of a resonator and to design controllers. Several control tests of a resonator have been done. A resonator has been excited by electromagnets controlled by a computer. Its amplitude has been adjusted by a PI control. The transient response is matched with a simulation result based on a mathematical model. A vibrating pattern may drift due to non-uniform factors of a resonator. The drift of the vibrating pattern is controlled and aligned to a reference direction by a PI control. These results are very useful to understand the behavior of resonator gyros and to design advanced control algorithm for better performance.

Drift Compensation Algorithm of Acceleration Sensor for Galloping Measurement System (갤로핑 측정을 위한 가속도 센서 드리프트 보상 알고리즘)

  • 변기식;안영주;김환성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.914-920
    • /
    • 2003
  • In this paper, we deal with two drift compensation algorithms of acceleration sensor for measuring the galloping on power transmission line. Firstly, the block diagram of galloping measurement system is given and a galloping model is presented. Secondly, two compensation algorithms, a simple compensation and a period compensation, are proposed. A simple compensation algorithm uses the drifts of velocity and distance at fixed periods, so it is useful for constant drift case. Next, a period compensation algorithm can compensate a periodic drift. This algorithm uses the previous measured data and compensated data for constant period, where the period is obtained by FFT method. Lastly, the effectiveness of proposed algorithms is verified by comparing between two algorithms in simulation, and its characteristics and the drift error bound are shown, respectively.

Force-To-Rebalance Mode of a Resonator Gyro and Angular Rate Measurement Tests (공진 자이로의 재평형 모드 구현과 각속도 측정 실험)

  • Jin, Jaehyun;Kim, Dongguk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.563-569
    • /
    • 2014
  • This article focuses on a hemispherical resonator gyro driven by the Coriolis effect. A hemispherical shell, called a resonator, is maintained in the resonance state by amplitude control and phase locking control. Parametric excitation has been used to control the amplitude. For rate measurement mode or FTR mode, nodal points have been kept to an amplitude of zero. Angular rate measurement has been demonstrated by rotating a resonator. Frequency mismatch between two stiffness principal axes is a major cause of low performance: vibrating pattern drift and reduced control effectiveness. This mismatch has been reduced significantly by the addition of small mass. A negative spring effect, which lowers resonance frequencies, has been verified experimentally.

Dynamic Modeling and Verification of Litton's Space Inertial Reference Unit(SIRU) (ICCAS 2003)

  • Choi, Hong-Taek;Oh, Shi-Hwan;Rhee, Seung-Wu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1211-1215
    • /
    • 2003
  • Accurate mathematical models of spacecraft components are an essential of spacecraft attitude control system design, analysis and simulation. Gyro is one of the most important spacecraft components used for attitude propagation and control. Gyro errors may seriously degrade the accuracy of the calculated spacecraft angular rate and of attitude estimates due to inherent drift and bias errors. In order to validate this model, nominal case simulation has been performed and compared for the low range mode and high range mode, respectively. In this paper, a mathematical model of gyro containing the relationships for predicting spacecraft angular rate and disturbances is proposed.

  • PDF

Study on flexure angle measurement of ring laser gryo and the improvement of flexure error (링레이저 자이로의 플렉셔 각도측정과 플렉셔 오차개선 연구)

  • 조민식;김광진;김정주
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.68-73
    • /
    • 2004
  • Flexure measurement of ring laser gyro was investigated by using an interferometer. A two-beam interferometer of Fiezo-fringe pattern obtained the flexure angle in 1-gravity acceleration and the higher acceleration environments. These environments were made with the addition of dummy mass to the ring laser gyro axis. The flexure angle change for 1-gravity acceleration change was measured as 2.37 arcsec/g with low repeatability error of 0.01 arcsec/g. The laser navigation system consisting of 3 flexure-reduced ring laser gyros showed the improvement of flexure error.

Attitude Estimation for the Biped Robot with Vision and Gyro Sensor Fusion (비전 센서와 자이로 센서의 융합을 통한 보행 로봇의 자세 추정)

  • Park, Jin-Seong;Park, Young-Jin;Park, Youn-Sik;Hong, Deok-Hwa
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.546-551
    • /
    • 2011
  • Tilt sensor is required to control the attitude of the biped robot when it walks on an uneven terrain. Vision sensor, which is used for recognizing human or detecting obstacles, can be used as a tilt angle sensor by comparing current image and reference image. However, vision sensor alone has a lot of technological limitations to control biped robot such as low sampling frequency and estimation time delay. In order to verify limitations of vision sensor, experimental setup of an inverted pendulum, which represents pitch motion of the walking or running robot, is used and it is proved that only vision sensor cannot control an inverted pendulum mainly because of the time delay. In this paper, to overcome limitations of vision sensor, Kalman filter for the multi-rate sensor fusion algorithm is applied with low-quality gyro sensor. It solves limitations of the vision sensor as well as eliminates drift of gyro sensor. Through the experiment of an inverted pendulum control, it is found that the tilt estimation performance of fusion sensor is greatly improved enough to control the attitude of an inverted pendulum.

Robust Electric Compass to Dynamic Magnetic Field Interference

  • Ko, Jae-Pyung;Kim, Yang-Hwan;Kang, Woong-Ki;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1814-1819
    • /
    • 2004
  • The purpose of this research is to improve the reliability of automobile navigation system that utilizes the magnetic compass for localization. On account of its sensitiveness against the dynamic external interference of the magnetic field, the electronic compass itself is not accurate enough to be used for the localization compared to the gyro-compass. To overcome this shortcoming, in this research, a robust electronic compass is designed by using two magnetic compasses to cancel out the dynamic interferences efficiently. That is, a dual compass predictive calibration algorithm against irregular external interference of magnetic field is newly proposed and implemented in this paper. When the dynamic interference can be eliminated from the electronic compass, it becomes much accurate than the gyro-based system that suffers from the accumulative drift error. The reliability and performance of the designed system have been verified through the real driving experiments.

  • PDF