• Title/Summary/Keyword: gyro

Search Result 634, Processing Time 0.04 seconds

Analysis of Navigation Error According to Rotational Motions of Rotational Inertial Navigation for Designing Optimal Rotation Sequence (최적 회전 절차 설계를 위한 회전형 관성항법장치의 회전 동작별 항법 오차 분석)

  • Jae-Hyuck Cha;Chan-Gook Park;Seong-Yun Cho;Min-Su Jo;Chan-Ju Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.445-452
    • /
    • 2024
  • This paper analyzes the navigation error for each rotational motion in order to design an optimal rotation sequence, which is a key technology in the rotational inertial navigation. Rotational inertial navigation system is designed to cancel out navigation errors caused by inertial sensor errors by periodically rotating the inertial measurement unit. A properly sequenced rotational motion cancels out the maximum amount of navigation error and is known as an optimal rotation sequence. To design such an optimal turning procedure, this paper identifies the feasible rotational motions that can be implemented in a rotational inertial navigation system and analyzes the navigation error introduced by each rotational motion. In addition, by analyzing the characteristics of the navigation error generated during a rotation sequence in combination, this paper presents the conditions for designing an optimal rotation sequence.

Configuration and Application of a deep learning-based fall detection system (딥러닝 기반 낙상 감지 시스템의 구성과 적용)

  • Jong-Seok Woo;Lionel Kyenyeneye;Sang-Joong Jung;Wan-Young Chung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.4
    • /
    • pp.213-220
    • /
    • 2023
  • Falling occurs unexpectedly during daily activities, causing many difficulties in life. The purpose of this study was to establish a system for fall detection of high-risk occupations and to verify their effectiveness by collecting data and applying it to predictive models. To this end, a wearable device was configured to detect fall by calculating acceleration signals and azimuths through acceleration sensors and gyro sensors. In addition, the study participants wore the device on their abdomen and measured necessary data from falls-related movements in the process of performing predetermined activities and transmitted it to the computer through a Bluetooth device present in the device. The collected data was processed through filtering, applied to fall detection prediction models based on deep learning algorithms which are 1D CNN, LSTM and CNN-LSTM, and evaluate the results.

K-DEV: A Borehole Deviation Logging Probe Applicable to Steel-cased Holes (철재 케이싱이 설치된 시추공에서도 적용가능한 공곡검층기 K-DEV)

  • Yoonho, Song;Yeonguk, Jo;Seungdo, Kim;Tae Jong, Lee;Myungsun, Kim;In-Hwa, Park;Heuisoon, Lee
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.167-176
    • /
    • 2022
  • We designed a borehole deviation survey tool applicable for steel-cased holes, K-DEV, and developed a prototype for a depth of 500 m aiming to development of own equipment required to secure deep subsurface characterization technologies. K-DEV is equipped with sensors that provide digital output with verified high performance; moreover, it is also compatible with logging winch systems used in Korea. The K-DEV prototype has a nonmagnetic stainless steel housing with an outer diameter of 48.3 mm, which has been tested in the laboratory for water resistance up to 20 MPa and for durability by running into a 1-km deep borehole. We confirmed the operational stability and data repeatability of the prototype by constantly logging up and down to the depth of 600 m. A high-precision micro-electro-mechanical system (MEMS) gyroscope was used for the K-DEV prototype as the gyro sensor, which is crucial for azimuth determination in cased holes. Additionally, we devised an accurate trajectory survey algorithm by employing Unscented Kalman filtering and data fusion for optimization. The borehole test with K-DEV and a commercial logging tool produced sufficiently similar results. Furthermore, the issue of error accumulation due to drift over time of the MEMS gyro was successfully overcome by compensating with stationary measurements for the same attitude at the wellhead before and after logging, as demonstrated by the nearly identical result to the open hole. We believe that the methodology of K-DEV development and operational stability, as well as the data reliability of the prototype, were confirmed through these test applications.

Seamless Superimposition Technique of Virtual Objects for AR System of Excavator Based on Image Processing (굴삭기 AR 시스템을 위한 이미지 프로세싱 기반 가상 이미지 중첩 기술)

  • Lee, Kanghyeok;Park, Joohwan;Kang, Hojun;Shin, Dohyoung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.2
    • /
    • pp.21-29
    • /
    • 2017
  • Recently, with having a great interest of the general public for the AR (Augmented Reality) technology, there have been lots of study to improve efficiency of a construction equipment with applying the AR technology to a construction equipment. The clear extrinsic calibration is essential to applying AR technology at the construction site without any error which came from superimposition between 'Real world' and 'Virtual world'. However, on the construction site, the clear extrinsic calibration is not possible, because of lack of time and budget for the specific survey, also, the huge error of the outdoor tracking system such as gyro, GPS system and so on. In this study, we do research about seamless superposition with unclear extrinsic calibration and the image process method for making AR navigator operating in the excavator. Based on this study, we figure that we can fully develop the AR navigator for the excavator. Furthermore, thereby operating AR navigator at many construction sites, we expect that the efficiency of the excavator will be improved. In addition, we can develop AR navigator for not only a excavator but all about construction equipment.

Performance of Magnetic Compasses Installed on the Small Fishing Vessels (연안어선 자기컴퍼스에 관한 연구)

  • Hong, Jang-Pyo;Shin, Hyeong-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.1
    • /
    • pp.21-29
    • /
    • 1993
  • The magnetic compass as a principal navigational instrument has been long used to fix ship's position and to determine ship's course. Particularly, in the small fishing vessels the studies on performance and rational usages for magnetic compass are requried to improve the safety and productivity of the small fishing vessels even though gyro compass is developed nowadays. For this purpose, the author examined the present condition of the magnetic compasses which are intalled on 219 small fishing vessels, and carried out a series of performance survey for each compass of them and also found the measured values of deviation by installation position of compass, respectively. The results obtained are summarized as follows: 1. The small fishing vessels less than 4 tons among the 219 small fishing vessels from 1 to 10 tons investigated were 50% of them. Only 1% of them were equipped with the deviation correctors, and 14 fishing vessels used the magnetic compasses which are more than 20 years old. 2. According to the compass installation position, the measured values of the deviation of the compass installed on the top bridge and the compass bed in bridge were ascertained to be the smallest, and those values of the compass installed on the bridge deck above engine room were larger and irregular. 3. The concomitant angle of the magnetic compasses installed on the experimented 4 fishing vessels were measured to be 6$^{\circ}$ to 16$^{\circ}$ and not accorded with the Korean standard values.

  • PDF

Tracking Control of 3-Wheels Omni-Directional Mobile Robot Using Fuzzy Azimuth Estimator (퍼지 방위각 추정기를 이용한 세 개의 전 방향 바퀴 구조의 이동로봇시스템의 개발)

  • Kim, Sang-Dae;Kim, Seung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3873-3879
    • /
    • 2010
  • Home service robot are not working in the fixed task such as industrial robot, because they are together with human in the same indoor space, but have to do in much more flexible and various environments. Most of them are developed on the base of the wheel-base mobile robot in the same method as a vehicle robot for factory automation. In these days, for holonomic system characteristics, omni-directional wheels are used in the mobile robot. A holonomicrobot, using omni-directional wheels, is capable of driving in any direction. But trajectory control for omni-directional mobile robot is not easy. Especially, azimuth control which sensor uncertainty problem is included is much more difficult. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy azimuth estimator. A trajectory controller for an omni-directional mobile robot, which each motor is controlled by an individual PID law to follow the speed command from inverse kinematics, needs a precise sensing data of its azimuth and exact estimation of reference azimuth value. It has imprecision and uncertainty inherent to perception sensors for azimuth. In this paper, they are solved by using fuzzy logic inference which can be used straightforward to perform the control of the mobile robot by means of the fuzzy behavior-based scheme already existent in literature. Finally, the good performance of the developed mobile robot is confirmed through live tests of path control task.

The Effect of Sensory Stimulation on Postural Tremor at Index Finger of Patients with Essential Tremor (ET) (본태성 진전 환자의 검지에서의 자세성 진전에 대한 감각자극 효과)

  • Lee, S.K.;Kim, J.W.;Kwon, Y.R.;Lee, Y.J.;Lee, J.H.;Eom, G.M.;Kwon, D.Y.;Lee, C.N.;Seo, Y.M.;Kim, M.K.;Park, K.W.;Jeong, H.C.;Manto, M.
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.129-134
    • /
    • 2013
  • The essential tremor is an involuntary oscillatory movement of body parts. Conventional treatments of essential tremor have little effects in some patients and also leads to significant side effects. Alternative to these treatments, sensory stimulation may have beneficial effects on the essential tremor. The purpose of this study was to analyze an effect of sensory stimulation on essential tremor. Ten patients with essential tremor ($67.4{\pm}8.82$ yrs, 5 men and 5 women) participated in this study. Three-axis gyro sensors were attached on index finger, hand and forearm of patients. Task of 'arms outstretched forward' was performed with and without sensory stimulation. Vectorsum of three dimensional angular velocities (pitch, roll, yaw) was calculated. Outcome measures included root-meansquare (RMS) mean of the vector-sum amplitude, total power, peak power and peak frequency. RMS amplitude, total power and peak power were reduced by sensory stimulation (p < 0.05). Peak frequency was not affected by sensory stimulation. The results indicate that the sensory stimulation is useful to suppress the essential tremor.

Development of Attitude Heading Reference System based on MEMS for High Speed Autonomous Underwater Vehicle (고속 자율 무인잠수정 적용을 위한 MEMS 기술기반 자세 측정 장치 개발)

  • Hwang, A-Rom;Ahn, Nam-Hyun;Yoon, Seon-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.666-673
    • /
    • 2013
  • This paper proposes the performance evaluation test of attitude heading reference system (AHRS) suitable for small high speed autonomous underwater vehicle(AUV). Although IMU can provides the detail attitude information, it is sometime not suitable for small AUV with short operation time in view of price and the electrical power consumption. One of alternative for tactical grade IMU is the AHRS based micro-machined electro mechanical system(MEMS) which can overcome many problems that have inhibited the adoption of inertial system for small AUV such as cost and power consumption. A cost effective and small size AHRS which incorporates measurements from 3-axis MEMS gyroscopes, accelerometers, and 3-axis magnetometers has been developed to provide a complete attitude solution for AUV and the attitude calculation algorithm is derived based the coordinate transform equation and Kalman filter. The developed AHRS was validated through various performance tests as like the magnetometer calibration, operating experiments using land mobile vehicle and flight motion simulator (FMS). The test of magnetometer calibration shows the developed MEMS AHRS is robust to the external magent field change and the test with land vehicle proves the leveling error of developed MEMS AHRS is below $0.5^{\circ}/hr$. The results of FMS test shows the fact that AHRS provides the measurement with $0.5^{\circ}/hr$ error during 5 minutes operation time. These results of performance evaluation tests showed that the developed AHRS provides attitude information which error of roll and pitch are below $1^{\circ}$ and the error of yaw is below $5^{\circ}$ and satisfies the required specification. It is expected that developed AHRS can provide the precise attitude measurement under sea trial with real AUV.

Driver's Status Recognition Using Multiple Wearable Sensors (다중 웨어러블 센서를 활용한 운전자 상태 인식)

  • Shin, Euiseob;Kim, Myong-Guk;Lee, Changook;Kang, Hang-Bong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.6
    • /
    • pp.271-280
    • /
    • 2017
  • In this paper, we propose a new safety system composed of wearable devices, driver's seat belt, and integrating controllers. The wearable device and driver's seat belt capture driver's biological information, while the integrating controller analyzes captured signal to alarm the driver or directly control the car appropriately according to the status of the driver. Previous studies regarding driver's safety from driver's seat, steering wheel, or facial camera to capture driver's physiological signal and facial information had difficulties in gathering accurate and continuous signals because the sensors required the upright posture of the driver. Utilizing wearable sensors, however, our proposed system can obtain continuous and highly accurate signals compared to the previous researches. Our advanced wearable apparatus features a sensor that measures the heart rate, skin conductivity, and skin temperature and applies filters to eliminate the noise generated by the automobile. Moreover, the acceleration sensor and the gyro sensor in our wearable device enable the reduction of the measurement errors. Based on the collected bio-signals, the criteria for identifying the driver's condition were presented. The accredited certification body has verified that the devices has the accuracy of the level of medical care. The laboratory test and the real automobile test demonstrate that our proposed system is good for the measurement of the driver's condition.

Design and Implementation of Interactive Game based on Embedded System (내장형 시스템 기반 체험형 게임의 설계 및 구현)

  • Lee, Woosik;Jung, Hoejung;Heo, Hojin;Kim, Namgi
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.43-50
    • /
    • 2017
  • Embedded System includes touch, GPS, motion, and acceleration sensor, and can communicate with neighbor devices using wireless communication. Because Arduino with embedded system provides good environment for development and application, developers, engineers, designers, as well as artists, students have a great interest. They utilize Arduino in the robot, home appliances, fashion, culture and so on. In this paper, we design and implement a game using Arduino with embedded system which recognizes the human movement by moving away from one-dimensional game of the existing touch method. Implemented embedded system game measures gyro-sensor to recognize human movement and detects the attack success of the opponent by using touch sensor. Moreover, health of the game player is updated in the real time through the android phone-based database. In this paper, implemented embedded system-based game provides GUI screen of android phone. It is possible to select watching mode and competition mode. Also, it has low energy consumption and easy to expand because it send and receive data packet through recent Bluetooth communication.