• Title/Summary/Keyword: gypsum mortar

Search Result 87, Processing Time 0.033 seconds

Compressive Strength and Shrinkage Strain of Slag-Based Alkali-Activated Mortar with Gypsum (석고가 첨가된 슬래그 기반 알카리활성 모르터의 압축강도 및 건조수축 변형률)

  • Yang, Keun-Hyeok;Sin, Jae-Il
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.1
    • /
    • pp.57-62
    • /
    • 2008
  • Twelve mortars were mixed and tested to explore the effect of gypsum on the compressive strength development and shrinkage strain of alkali-activated mortars. Powder typed sodium silicate and ground granulated blast-furnace slag were employed as alkaline activator and source material, respectively, to produce cementless mortar. The main variables investigated were alkali quality coefficient combining the concentration of activator and main compositions in source material, and the adding amount of gypsum ranged between 1 and 5% with respect to the weight of binder. Initial flow, compressive strength development, modulus of rupture, and shrinkage strain behavior of mortar specimens were measured. In addition, the hydration production of alkali-activated pastes with gypsum was traced using X-ray diffraction and energy-dispersive X-ray analysis combined with scanning electron microscope image. Test results showed that the initial flow of slag-based alkali-activated mortar was little influenced by the adding amount of gypsum. On the other hand, the effect of gypsum on the compressive strength of mortar specimens was dependent on the alkali quality coefficient, indicating that the compressive strength increased with the increase of the adding amount of gypsum until a certain limit, beyond which the strength decreased slowly. Shrinkage strain of mortar tested was little influenced by the adding amount of gypsum because no ettringite as hydration product was generated. However, the adding of gypsum had a beneficial effect on reducing the microcrack in the alkali-activated mortar.

Experimental study on Properties of Dry Shrinkage Deformation of Floor Dry-mortar with Alpha-hemihydrate Gypsum (알파반수석고를 활용한 바닥용 건조 모르타르의 수축변형 특성에 관한 실험적 연구)

  • Kim, Rae-Hwan;Kim, Gyu-Yong;Lee, Bo-Kyeong;Kim, Jung-Hyun;Han, Sang-Hyu;Choe, Gyeong-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.158-159
    • /
    • 2014
  • In general, the shrinkage occurring in the floor mortar is large the influence by the dry shrinkage. In order to reduce the cracks occurring in the floor mortar, studies of physical methods are often performed, but these methods is difficult to prevent cracking of the floor mortar essentially. Therefore, in this study, the dry shrinkage properties of floor mortar of gypsum and red clay type using alpha-hemihydrate gypsum had been evaluated. The experimental variables were cement mortar(CM), gypsum mortar(GM), red-clay mortar(RM), the evaluation items was conducted experiment to evaluate the setting time, the compressive strength, drying shrinkage cracks, the dry shrinkage. As a result, it was confirmed that condensation time of GM is shorter that that of CM, and GM satisfied the compressive strength of the floor mortar standard. Also shrinkage deformation of GM reduced more than the CM.

  • PDF

Initial Strength Characteristics of Cementitious Gypsum-Containing Coal Gasification Slag Powder Replacement Cement Mortar (석고 혼입 석탄가스화 슬래그 미분말 치환 시멘트 모르타르의 초기강도 특성)

  • Cho, Hyeon-Seo;Kim, Min-Hyouck;Lee, Gun-Cheol;Cho, Do-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.207-208
    • /
    • 2019
  • In this study, compressive strength was measured to evaluate the initial strength of cement mortar substituted with coal gasification slag containing desulfurized gypsum, and the reactivity of desulfurized gypsum was confirmed. In order to improve the reactivity, 2% gypsum mixed type and gypsum unfedged type specimens were fabricated and the influence of desulfurization gypsum on compressive strength of coal gasification slag and blast furnace slag fine powder replacement cement mortar was compared and confirmed. As a result of the experiment, it was confirmed that the initial compressive strength of the specimen containing the desulfurized gypsum was improved at the initial stage.

  • PDF

Fireproof Performance of Mortar using Gypsum in Simplified Heating Test (간이 내화시험에 의한 석고계 모르타르의 내화성능)

  • Kang, Suk-Pyo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.2
    • /
    • pp.181-188
    • /
    • 2011
  • Spalling must be considered when designing high-strength concrete to cope with fire. This study investigates the temperature rise of steel bar in high-strength concrete coated with fireproof mortar using gypsum exposed to fire. It was found that fireproof mortar using gypsum is more effective in constraining the temperature rise of steel bar in the high strength concrete than fireproof mortar using cement, and that the thinner the cover depth of the fireproof mortar, the more significant the influence of the gypsum. In addition, while there was no difference between ${\alpha}$-hemihydrate mortar and ${\beta}$-hemihydrate mortar on the temperature rise of steel bar, the compressive strength of ${\alpha}$-hemihydrate mortar is higher than that of ${\beta}$-hemihydrate mortar.

Fundamental Properties of Zero-Cement Mortar with Variation Replacement Ratio of Incineration Waste Ash and Gypsum (무수석고와 소각장애시의 치환율 변화에 따른 고로슬래그 미분말 활용 무 시멘트 모르타르의 기초적특성)

  • Lu, Liang Liang;Kim, Jun Ho;Baek, Byung Hoon;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.242-243
    • /
    • 2014
  • In this study, industrial by-products including blast furnace slag, incineration ash and waste gypsum were used with recycled fine aggregates to manufacture the zero-cement mortar. The replacement ratio of anhydrite gypsum was fixed as 0, 10%, 20% the replacement ratio fo WA1 was fixed as 0.5% and 1.0%, respectively. It could be identified that when the replacement of gypsum was 20% and WA1 of 1.0%, the strength could be in the range of normal strength.

  • PDF

Engineering Properties of Zero-Cement Mortar with Variation Replacement Ratio of Incineration Waste Ash and Gypsum (석고종류 및 소각장애시 치환율 변화에 따른 고로슬래그 미분말 활용 무시멘트 모르타르의 공학적 특성)

  • Park, Jun Hui;Huang, Jin Guang;Kim, Jun Ho;Jo, Man Ki;Han, Min cheol;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.222-223
    • /
    • 2014
  • In this study, industrial by-products including blast furnace slag, incineration ash and waste gypsum were used with recycled fine aggregates to manufacture the zero-cement mortar.The replacement ratio of dihydrate gypsum and anhydrite gypsum was fixed as 0 and 10%, the replacement ratio fo WA1 was fixed as 0.5% and 1.0%, respectively. It could be identified that when the replacement of gypsum was 10% and WA1 of 1.0%, the strength could be in the range of normal strength.

  • PDF

고강도콘크리트의 제물성 향상을 위한 연구

  • 문한영;김기형;문대중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.143-150
    • /
    • 1994
  • To improve the qualities of high strength mortar and concrete with high range water reducing admixture, silica fume and gypsum is applied. The flow loss of mortar is reduced and the compressive strength of mortar and concrete is improved by silica fume. And the silica fume is effective for decreasing the temperature of high strength concrete. In addition to, the strength of high strength concrete is more improved by the gypsum.

  • PDF

A Study on the Compensation of Early Age Strength in Mortar and Concrete using Blast Furnace Slag Powder (슬래그 미분말을 사용한 모르타르 및 콘크리트의 초기강도 보상에 관한 연구)

  • 김성수;연영훈;이성수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.559-562
    • /
    • 2000
  • This study is about the compensation of early age strength on mortar and concrete admixed with blast-furnace slag powder. For study, we have used fine powder of gypsum and kiln dust from cement factory. According to the test results, we have obtained proper mixing ratio of slag powder, gypsum and kiln dust for the compensation of early age strength on mortar and concrete property.

  • PDF

An Experimental Study on the Optimized Mixture of Light-weight Aggregate Mortar for Plaster with Gypsum (석고를 혼입한 경량 모르타르 바름재의 최적배합 도출에 관한 실험적 연구)

  • Lee, Hyun-Woo;Ji, Suk-Won;Kim, Heung-Youl;Seo, Chee-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.371-372
    • /
    • 2009
  • This study is focused on deducing the optimized mixture of light-weight aggregate mortar for fire resistance plaster using gypsum, as it's a fundamental study for development of light-weight aggregate mortar.

  • PDF

Effects of Incineration Waste Ash and Gypsum Substitution on the Properties of Blast Furnace Slag Mortar using Recycled Aggregate (소각장 애쉬 및 석고치환이 고로슬래그 미분말 기반 순환골재 모르타르의 물성에 미치는 영향)

  • Han, Min Cheol;Han, Dong Yeop;Lu, Liang Liang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.161-167
    • /
    • 2015
  • Nowadays, all the world face to the global warming problems due to the emission of $CO_2$. From the previous studies, recycled aggregates were used as an alkali activator in blast furnace slag to achieve zero-cement concrete, and favorable results of obtaining strength were achieved. In this study, gypsum and incineration waste ash were used as the additional alkali activation and effects of the gypsum and incineration waste ash to enhance the performance of the mortar were tested. Results showed that although the replacement ratio of 0.5% of incineration waste ash and 20% of anhydrous gypsum resulted in the low of mortar at the early age, while it improved the later strength and achieved the similar strength to that of conventional mortar (at 91 days).