• 제목/요약/키워드: gut

검색결과 1,137건 처리시간 0.022초

Effect of fermented red ginseng on gut microbiota dysbiosis- or immobilization stress-induced anxiety, depression, and colitis in mice

  • Yoon-Jung Shin;Dong-Yun Lee;Joo Yun Kim;Keon Heo;Jae-Jung Shim;Jung-Lyoul Lee;Dong-Hyun Kim
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.255-264
    • /
    • 2023
  • Background: Red ginseng (RG) alleviates psychiatric disorders. Fermented red ginseng (fRG) alleviates stress-induced gut inflammation. Gut dysbiosis causes psychiatric disorders with gut inflammation. To understand the gut microbiota-mediated action mechanism of RG and fRG against anxiety/depression (AD), we investigated the effects of RG, fRG, ginsenoside Rd, and 20(S)-β-D-glucopyranosyl protopanaxadiol (CK) on gut microbiota dysbiosis-induced AD and colitis in mice. Methods: Mice with AD and colitis were prepared by exposing to immobilization stress (IS) or transplanting the feces of patients with ulcerative colitis and depression (UCDF). AD-like behaviors were measured in the elevated plus maze, light/dark transition, forced swimming, and tail suspension tests. Results: Oral gavage of UCDF increased AD-like behaviors and induced neuroinflammation, gastrointestinal inflammation, and gut microbiota fluctuation in mice. Oral administration of fRG or RG treatment reduced UCDF-induced AD-like behaviors, hippocampal and hypothalamic IL-6 expression, and blood corticosterone level, whereas UCDF-suppressed hippocampal BDNF+NeuN+ cell population and dopamine and hypothalamic serotonin levels increased. Furthermore, their treatments suppressed UCDF-induced colonic inflammation and partially restored UCDF-induced gut microbiota fluctuation. Oral administration of fRG, RG, Rd, or CK also decreased IS-induced AD-like behaviors, blood IL-6 and corticosterone and colonic IL-6 and TNF-α levels, and gut dysbiosis, while IS-suppressed hypothalamic dopamine and serotonin levels increased. Conclusion: Oral gavage of UCDF caused AD, neuroinflammation, and gastrointestinal inflammation in mice. fRG mitigated AD and colitis in UCDF-exposed mice by the regulation of the microbiota-gut-brain axis and IS-exposed mice by the regulation of the hypothalamic-pituitary-adrenal axis.

치매 한약치료의 인지기능 개선 및 장내 미생물 변화에 대한 연구동향 (Research Trends in Using Korean Traditional Herbal Medicine for Dementia on the Improvement of Cognitive Function and Changes in Gut Microbiota)

  • 최미라;이정한;박소현;김보경;임정화
    • 동의신경정신과학회지
    • /
    • 제34권3호
    • /
    • pp.275-305
    • /
    • 2023
  • Objectives: This study aimed to review clinical and experimental studies using Korean traditional herbal medicine for dementia on the improvement of cognitive function and changes in gut microbiota. Methods: We searched 12 databases for clinical and experimental studies on the effect of Korean traditional herbal medicine treatment for dementia on changes in gut microbiota. Sample sizes, dementia types, diagnosis criteria, interventions, outcomes, and results, including changes in gut microbiota, were extracted from the included clinical studies and analyzed. Subjects, interventions, outcomes, and results, including gut microbiota changes, were extracted from the included experimental studies and analyzed. Results: A total of 22 studies were selected, and most of them were experimental studies. Improvement in cognitive function and changes in gut microbiota were reported in all studies. The most frequently used herbal material was Poria cocos, and the most frequently used prescription was Danggwijagyak-san and Chilseong-hwan. Lactobacillus, Firmicutes, Bacteroidetes, and Proteobacteria were frequently assessed gut microbiota. Conclusions: These results suggest the treatment potential of Korean traditional herbal medicine for dementia by regulating gut microbiota. However, there were discrepancies related to changes in gut microbiota among studies. Therefore, further studies are needed to clarify the effect and mechanism of Korean traditional herbal medicine for dementia on gut microbiota.

Effect of Consumption of Animal Products on the Gut Microbiome Composition and Gut Health

  • Chaewon Lee;Junbeom Lee;Ju Young Eor;Min-Jin Kwak;Chul Sung Huh;Younghoon Kim
    • 한국축산식품학회지
    • /
    • 제43권5호
    • /
    • pp.723-750
    • /
    • 2023
  • The gut microbiome is critical in human health, and various dietary factors influence its composition and function. Among these factors, animal products, such as meat, dairy, and eggs, represent crucial sources of essential nutrients for the gut microbiome. However, the correlation and characteristics of livestock consumption with the gut microbiome remain poorly understood. This review aimed to delineate the distinct effects of meat, dairy, and egg products on gut microbiome composition and function. Based on the previous reports, the impact of red meat, white meat, and processed meat consumption on the gut microbiome differs from that of milk, yogurt, cheese, or egg products. In particular, we have focused on animal-originated proteins, a significant nutrient in each livestock product, and revealed that the major proteins in each food elicit diverse effects on the gut microbiome. Collectively, this review highlights the need for further insights into the interactions and mechanisms underlying the impact of animal products on the gut microbiome. A deeper understanding of these interactions would be beneficial in elucidating the development of dietary interventions to prevent and treat diseases linked to the gut microbiome.

<짐가제굿>에 나타난 살(煞) 막음의 의미와 제의적 성격 (A study on the correlations of between the ritual feature and the narrative)

  • 이경화
    • 공연문화연구
    • /
    • 제38호
    • /
    • pp.225-248
    • /
    • 2019
  • <짐가제굿>은 함경도의 망묵굿에서 구송되는 무가로, '살(煞)이 들어오는 걸 막는 거리'로 알려져 있다. <짐가제굿>은 서사의 길이가 짧고 조사된 각편의 수가 적으며 추가 조사 또한 어렵다. 이에 <짐가제굿> 연구는 현재도 연행되며 서사가 유사한 <차사본풀이>와의 비교 속에서 이루어졌다. <짐가제굿>을 보다 온전히 이해하기 위해서는 <짐가제굿>을 중심에 두고 논의되어야 하며, <짐가제굿>의 '살이 들어오는 걸 막는 거리'의 제의적 역할과 서사의 상관성 또한 주목할 필요가 있다. 이에 본고에서는 우선 <짐가제굿>의 서사 속 살을 막는 화소의 의미에 대해 살펴보았다. <짐가제굿>은 강림골이 주요 배경으로 나타나며, 마을 외부인의 죽음과 그 한을 해결하기 위한 일련의 과정 속에서, 개인의 문제가 마을의 문제로 확대되는 것을 확인하였다. 그로 인해 문제의 영향이 마을 전체에 미쳤으며, 마을 구성원 간에는 공포의 감정을 공유했다 이에 원혼의 해원, 악인의 징치와 더불어 살을 막아 마을 사람들의 두려움을 해소함으로써 완전한 해결이 이루어졌다고 논의했다. 나아가 <짐가제굿>은 개인굿인 망묵굿에서 구송되나 서사 속 살 막음의 의미를 통해, 이 거리는 그 제의적 기능이 개인굿의 범위를 넘어 마을의 안녕을 위한 거리로서 기능한다고 논하였다.

Effects of Gut Extract Protein and Insulin on Glucose Uptake and GLUT 1 Expression in HC 11 Mouse Mammary Epithelial Cells

  • Myung, K.H.;Ahn, B.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권8호
    • /
    • pp.1210-1214
    • /
    • 2002
  • The large and rapid changes of glucose utilization in lactating mammary tissue in response to changes in nutritional state must be largely related by external signal of insulin. This also must be related with the quantity and composition of the diet in vivo. To characterize the mode of gut extract protein with insulin, in vitro experiment was conducted with HC11 cells. The gut extract protein has not only the same effect as insulin alone but also the synergistic effect with insulin in 2-Deoxy[3H] glucose uptake. Although the gut extract did not modulates glucose uptake via increasing the rate of translation of the GLUT1 protein, northern blot analysis indicated that the gut extract protein increased the expression of GLUT1 mRNA by a threefold and also there was a dose-dependent increase in the expression of GLUT1 mRNA. The gut extract protein is therefore shown to be capable of modulating glucose uptake by transcription level with insulin in HC 11 cells.

Gut microbiota-mediated pharmacokinetics of ginseng saponins

  • Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • 제42권3호
    • /
    • pp.255-263
    • /
    • 2018
  • Orally administered ginsengs come in contact with the gut microbiota, and their hydrophilic constituents, such as ginsenosides, are metabolized to hydrophobic compounds by gastric juice and gut microbiota: protopanxadiol-type ginsenosides are mainly transformed into compound K and ginsenoside Rh2; protopanaxatriol-type ginsenosides to ginsenoside Rh1 and protopanaxatriol, and ocotillol-type ginsenosides to ocotillol. Although this metabolizing activity varies between individuals, the metabolism of ginsenosides to compound K by gut microbiota in individuals treated with ginseng is proportional to the area under the blood concentration curve for compound K in their blood samples. These metabolites such as compound K exhibit potent pharmacological effects, such as antitumor, anti-inflammatory, antidiabetic, antiallergic, and neuroprotective effects compared with the parent ginsenosides, such as Rb1, Rb2, and Re. Therefore, to monitor the potent pharmacological effects of ginseng, a novel probiotic fermentation technology has been developed to produce absorbable and bioactive metabolites. Based on these findings, it is concluded that gut microbiota play an important role in the pharmacological action of orally administered ginseng, and probiotics that can replace gut microbiota can be used in the development of beneficial and bioactive ginsengs.

The Role of Gut Microbiota in Modulating Tumor Growth and Anticancer Agent Efficacy

  • Kim, Jaeho;Lee, Heung Kyu
    • Molecules and Cells
    • /
    • 제44권5호
    • /
    • pp.356-362
    • /
    • 2021
  • An increasing number of studies have revealed an interaction between gut microbiota and tumors. The enrichment of specific bacteria strains in the intestines has been found to modulate tumor growth and influence the mechanisms of tumor treatment. Various bacteria are involved in modulating the effects of chemotherapeutic drugs currently used to treat patients with cancer, and they affect not only gastrointestinal tract tumors but also distant organ tumors. In addition, changes in the gut microbiota are known to be involved in the antitumor immune response as well as the modulation of the intestinal immune system. As a result, the gut microbiota plays an important role in modulating the efficacy of immune checkpoint inhibitors. Therefore, gut microbiota could be considered as an adjuvant treatment option with other cancer treatment or as another marker for predicting treatment response. In this review, we examine how gut microbiota affects cancer treatments.

Dietary modulation of gut microbiota for the relief of irritable bowel syndrome

  • Kim, Mi-Young;Choi, Sang-Woon
    • Nutrition Research and Practice
    • /
    • 제15권4호
    • /
    • pp.411-430
    • /
    • 2021
  • Irritable bowel syndrome (IBS) is a frequently diagnosed gastrointestinal (GI) disorder characterized by recurrent abdominal pain, bloating, and changes in the stool form or frequency without any structural changes and overt inflammation. It is not a life-threatening condition but causes a considerable level of discomfort and distress. Among the many pathophysiologic factors, such as altered GI motility, visceral hypersensitivity, and low-grade mucosal inflammation, as well as other immunologic, psychologic, and genetic factors, gut microbiota imbalance (dysbiosis), which is frequently found in IBS, has been highlighted as an etiology of IBS. Dysbiosis may affect gut mucosal homeostasis, immune function, metabolic regulation, and even visceral motor function. As diet is shown to play a fundamental role in the gut microbiota profile, this review discusses the influence of diet on IBS occurring through the modulation of gut microbiota. Based on previous studies, it appears that dietary modulation of the gut microbiota may be effective for the alleviation of IBS symptoms and, also an effective IBS management strategy based on the underlying mechanism; especially because, IBS currently has no specific treatment owing to its uncertain etiology.

Antimicrobials, Gut Microbiota and Immunity in Chickens

  • Lee, Kyung-Woo;Lillehoj, Hyun S.
    • 한국가금학회지
    • /
    • 제38권2호
    • /
    • pp.155-164
    • /
    • 2011
  • The use of antimicrobials will be soon removed due to an increase of occurrence of antibiotic-resistant bacteria or ionophore-resistant Eimeria species in poultry farms and consumers' preference on drug-free chicken meats or eggs. Although dietary antimicrobials contributed to the growth and health of the chickens, we do not fully understand their interrelationship among antimicrobials, gut microbiota, and host immunity in poultry. In this review, we explored the current understanding on the effects of antimicrobials on gut microbiota and immune systems of chickens. Based on the published literatures, it is clear that antibiotics and antibiotic ionophores, when used singly or in combination could influence gut microbiota. However, antimicrobial effect on gut microbiota varied depending on the samples (e.g., gut locations, digesta vs. mucosa) used and among the experiments. It was noted that the digesta vs. the mucosa is the preferred sample with the results of no change, increase, or decrease in gut microbiota community. In future, the mucosa-associated bacteria should be targeted as they are known to closely interact with the host immune system and pathogen control. Although limited, dietary antimicrobials are known to modulate humoral and cell-mediated immunities. Ironically, the evidence is increasing that dietary antimicrobials may play an important role in triggering enteric disease such as gangrenous dermatitis, a devastating disease in poultry industry. Future work should be done to unravel our understanding on the complex interaction of host-pathogen-microbiota-antimicrobials in poultry.

발효유의 혈중 콜레스테롤 조절 기능과 발효유 기능성에 대한 장내 균총 구성의 영향 (Serum Cholesterol-lowering Effect of Fermented Milk and Effect of Intestinal Microflora Composition on Function of Fermented Milk)

  • 김유진;윤요한;이수민
    • Journal of Dairy Science and Biotechnology
    • /
    • 제37권1호
    • /
    • pp.27-32
    • /
    • 2019
  • Fermented milk has been developed with its functionalities, and its health-promoting ability has been spotlighted due to its relationship with diseases such as cancer, cardiovascular disease, and diabetes, and gut microbiota. As national burden of cardiovascular disease increases over time, there is a need to prevent hypercholesterolemia. To achieve that, gut microbiota, which is altered by host's diet and environment, plays important roles in lowering cholesterol in the blood. Moreover, fermented milk may be effective as a cholesterol-lowering agent by altering gut microbiota composition. Gut microbiota may alter not only functions of the fermented milk but also bio-accessibility of functional materials. These results suggested that gut microbiota composition influences the impact of fermented milk. Thus, we should understand how functional materials are degraded by gut microbiota and absorbed into the gut.