DOI QR코드

DOI QR Code

Dietary modulation of gut microbiota for the relief of irritable bowel syndrome

  • Received : 2021.04.08
  • Accepted : 2021.05.24
  • Published : 2021.08.01

Abstract

Irritable bowel syndrome (IBS) is a frequently diagnosed gastrointestinal (GI) disorder characterized by recurrent abdominal pain, bloating, and changes in the stool form or frequency without any structural changes and overt inflammation. It is not a life-threatening condition but causes a considerable level of discomfort and distress. Among the many pathophysiologic factors, such as altered GI motility, visceral hypersensitivity, and low-grade mucosal inflammation, as well as other immunologic, psychologic, and genetic factors, gut microbiota imbalance (dysbiosis), which is frequently found in IBS, has been highlighted as an etiology of IBS. Dysbiosis may affect gut mucosal homeostasis, immune function, metabolic regulation, and even visceral motor function. As diet is shown to play a fundamental role in the gut microbiota profile, this review discusses the influence of diet on IBS occurring through the modulation of gut microbiota. Based on previous studies, it appears that dietary modulation of the gut microbiota may be effective for the alleviation of IBS symptoms and, also an effective IBS management strategy based on the underlying mechanism; especially because, IBS currently has no specific treatment owing to its uncertain etiology.

Keywords

References

  1. Sperber AD, Bangdiwala SI, Drossman DA, Ghoshal UC, Simren M, Tack J, Whitehead WE, Dumitrascu DL, Fang X, Fukudo S, et al. Worldwide prevalence and burden of functional gastrointestinal disorders, results of rome foundation global study. Gastroenterology 2021;160:99-114.e3. https://doi.org/10.1053/j.gastro.2020.04.014
  2. Drossman DA. Functional gastrointestinal disorders: history, pathophysiology, clinical features and Rome IV. Gastroenterology 2016;150:1262-79. https://doi.org/10.1053/j.gastro.2016.02.032
  3. Lacy BE, Mearin F, Chang L, Chey WD, Lembo AJ, Simren M, Spiller R. Bowel disorders. Gastroenterology 2016;150:1393-1407.E5. https://doi.org/10.1053/j.gastro.2016.02.031
  4. Pimentel M, Lembo A, Chey WD, Zakko S, Ringel Y, Yu J, Mareya SM, Shaw AL, Bortey E, Forbes WP; TARGET Study Group. Rifaximin therapy for patients with irritable bowel syndrome without constipation. N Engl J Med 2011;364:22-32. https://doi.org/10.1056/NEJMoa1004409
  5. Lembo A, Pimentel M, Rao SS, Schoenfeld P, Cash B, Weinstock LB, Paterson C, Bortey E, Forbes WP. Repeat treatment with rifaximin is safe and effective in patients with diarrhea-predominant irritable bowel syndrome. Gastroenterology 2016;151:1113-21. https://doi.org/10.1053/j.gastro.2016.08.003
  6. Ponziani FR, Zocco MA, D'Aversa F, Pompili M, Gasbarrini A. Eubiotic properties of rifaximin: disruption of the traditional concepts in gut microbiota modulation. World J Gastroenterol 2017;23:4491-9. https://doi.org/10.3748/wjg.v23.i25.4491
  7. Mazzawi T, Lied GA, Sangnes DA, El-Salhy M, Hov JR, Gilja OH, Hatlebakk JG, Hausken T. The kinetics of gut microbial community composition in patients with irritable bowel syndrome following fecal microbiota transplantation. PLoS One 2018;13:e0194904. https://doi.org/10.1371/journal.pone.0194904
  8. Soderholm AT, Pedicord VA. Intestinal epithelial cells: at the interface of the microbiota and mucosal immunity. Immunology 2019;158:267-80. https://doi.org/10.1111/imm.13117
  9. Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol 2014;14:667-85. https://doi.org/10.1038/nri3738
  10. Ratanasirintrawoot S, Israsena N. Stem cells in the intestine: possible roles in pathogenesis of irritable bowel syndrome. J Neurogastroenterol Motil 2016;22:367-82. https://doi.org/10.5056/jnm16023
  11. O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep 2006;7:688-93. https://doi.org/10.1038/sj.embor.7400731
  12. Li M, Zhang L, Lu B, Chen Z, Chu L, Meng L, Fan Y. Role of dendritic cell-mediated abnormal immune response in visceral hypersensitivity. Int J Clin Exp Med 2015;8:13243-50.
  13. Zhou C, Fang X, Xu J, Gao J, Zhang L, Zhao J, Meng Y, Zhou W, Han X, Bai Y, et al. Bifidobacterium longum alleviates irritable bowel syndrome-related visceral hypersensitivity and microbiota dysbiosis via Paneth cell regulation. Gut Microbes 2020;12:1782156. https://doi.org/10.1080/19490976.2020.1782156
  14. Vincent AD, Wang XY, Parsons SP, Khan WI, Huizinga JD. Abnormal absorptive colonic motor activity in germ-free mice is rectified by butyrate, an effect possibly mediated by mucosal serotonin. Am J Physiol Gastrointest Liver Physiol 2018;315:G896-907. https://doi.org/10.1152/ajpgi.00237.2017
  15. Geremia A, Biancheri P, Allan P, Corazza GR, Di Sabatino A. Innate and adaptive immunity in inflammatory bowel disease. Autoimmun Rev 2014;13:3-10. https://doi.org/10.1016/j.autrev.2013.06.004
  16. Eshraghian A, Eshraghian H. Interstitial cells of Cajal: a novel hypothesis for the pathophysiology of irritable bowel syndrome. Can J Gastroenterol 2011;25:277-9. https://doi.org/10.1155/2011/478370
  17. El-Salhy M, Hausken T, Gilja OH, Hatlebakk JG. The possible role of gastrointestinal endocrine cells in the pathophysiology of irritable bowel syndrome. Expert Rev Gastroenterol Hepatol 2017;11:139-48. https://doi.org/10.1080/17474124.2017.1269601
  18. Chong PP, Chin VK, Looi CY, Wong WF, Madhavan P, Yong VC. The microbiome and irritable bowel syndrome - A review on the pathophysiology, current research and future therapy. Front Microbiol 2019;10:1136. https://doi.org/10.3389/fmicb.2019.01136
  19. Davenport ER, Sanders JG, Song SJ, Amato KR, Clark AG, Knight R. The human microbiome in evolution. BMC Biol 2017;15:127. https://doi.org/10.1186/s12915-017-0454-7
  20. Scarpellini E, Ianiro G, Attili F, Bassanelli C, De Santis A, Gasbarrini A. The human gut microbiota and virome: potential therapeutic implications. Dig Liver Dis 2015;47:1007-12. https://doi.org/10.1016/j.dld.2015.07.008
  21. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature 2007;449:804-10. https://doi.org/10.1038/nature06244
  22. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GA, Gasbarrini A, Mele MC. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019;7:14. https://doi.org/10.3390/microorganisms7010014
  23. Jeffery IB, O'Toole PW, Ohman L, Claesson MJ, Deane J, Quigley EM, Simren M. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 2012;61:997-1006. https://doi.org/10.1136/gutjnl-2011-301501
  24. Dominguez-Bello MG, Blaser MJ, Ley RE, Knight R. Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology 2011;140:1713-9. https://doi.org/10.1053/j.gastro.2011.02.011
  25. Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 2014;7:17-44. https://doi.org/10.3390/nu7010017
  26. Simren M, Barbara G, Flint HJ, Spiegel BM, Spiller RC, Vanner S, Verdu EF, Whorwell PJ, Zoetendal EG; Rome Foundation Committee. Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut 2013;62:159-76. https://doi.org/10.1136/gutjnl-2012-302167
  27. Tuddenham S, Sears CL. The intestinal microbiome and health. Curr Opin Infect Dis 2015;28:464-70. https://doi.org/10.1097/QCO.0000000000000196
  28. Duncan SH, Louis P, Thomson JM, Flint HJ. The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol 2009;11:2112-22. https://doi.org/10.1111/j.1462-2920.2009.01931.x
  29. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science 2012;336:1262-7. https://doi.org/10.1126/science.1223813
  30. Quigley EM. The gut-brain axis and the microbiome: clues to pathophysiology and opportunities for novel management strategies in irritable bowel syndrome (IBS). J Clin Med 2018;7:6. https://doi.org/10.3390/jcm7010006
  31. van de Wouw M, Schellekens H, Dinan TG, Cryan JF. Microbiota-gut-brain axis: modulator of host metabolism and appetite. J Nutr 2017;147:727-45. https://doi.org/10.3945/jn.116.240481
  32. Fung C, Vanden Berghe P. Functional circuits and signal processing in the enteric nervous system. Cell Mol Life Sci 2020;77:4505-22. https://doi.org/10.1007/s00018-020-03543-6
  33. Bhattarai Y, Muniz Pedrogo DA, Kashyap PC. Irritable bowel syndrome: a gut microbiota-related disorder? Am J Physiol Gastrointest Liver Physiol 2017;312:G52-62.
  34. Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 2018;23:716-24. https://doi.org/10.1016/j.chom.2018.05.003
  35. Gao K, Mu CL, Farzi A, Zhu WY. Tryptophan metabolism: a link between the gut microbiota and brain. Adv Nutr 2020;11:709-23. https://doi.org/10.1093/advances/nmz127
  36. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015;161:264-76. https://doi.org/10.1016/j.cell.2015.02.047
  37. De Vadder F, Grasset E, Manneras Holm L, Karsenty G, Macpherson AJ, Olofsson LE, Backhed F. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc Natl Acad Sci U S A 2018;115:6458-63. https://doi.org/10.1073/pnas.1720017115
  38. Berstad A, Raa J, Valeur J. Tryptophan: 'essential' for the pathogenesis of irritable bowel syndrome? Scand J Gastroenterol 2014;49:1493-8. https://doi.org/10.3109/00365521.2014.936034
  39. Bosi A, Banfi D, Bistoletti M, Giaroni C, Baj A. Tryptophan metabolites along the microbiota-gut-brain axis: an interkingdom communication system influencing the gut in health and disease. Int J Tryptophan Res 2020;13:1178646920928984.
  40. Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, Zecchi R, D'Angelo C, MassiBenedetti C, Fallarino F, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013;39:372-85. https://doi.org/10.1016/j.immuni.2013.08.003
  41. O'Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the braingut-microbiome axis. Behav Brain Res 2015;277:32-48. https://doi.org/10.1016/j.bbr.2014.07.027
  42. Williams BB, Van Benschoten AH, Cimermancic P, Donia MS, Zimmermann M, Taketani M, Ishihara A, Kashyap PC, Fraser JS, Fischbach MA. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 2014;16:495-503. https://doi.org/10.1016/j.chom.2014.09.001
  43. Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol 2017;17:219-32. https://doi.org/10.1038/nri.2017.7
  44. Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol 2014;16:1024-33. https://doi.org/10.1111/cmi.12308
  45. Bellini M, Gambaccini D, Stasi C, Urbano MT, Marchi S, Usai-Satta P. Irritable bowel syndrome: a disease still searching for pathogenesis, diagnosis and therapy. World J Gastroenterol 2014;20:8807-20. https://doi.org/10.3748/wjg.v20.i27.8807
  46. Tap J, Derrien M, Tornblom H, Brazeilles R, Cools-Portier S, Dore J, Storsrud S, Le Neve B, Ohman L, Simren M. Identification of an intestinal microbiota signature associated with severity of irritable bowel syndrome. Gastroenterology 2017;152:111-123.e8. https://doi.org/10.1053/j.gastro.2016.09.049
  47. Schmidt TS, Raes J, Bork P. The human gut microbiome: from association to modulation. Cell 2018;172:1198-215. https://doi.org/10.1016/j.cell.2018.02.044
  48. Hyland NP, Cryan JF. Microbe-host interactions: influence of the gut microbiota on the enteric nervous system. Dev Biol 2016;417:182-7. https://doi.org/10.1016/j.ydbio.2016.06.027
  49. Pittayanon R, Lau JT, Yuan Y, Leontiadis GI, Tse F, Surette M, Moayyedi P. Gut microbiota in patients with irritable bowel syndrome-A systematic review. Gastroenterology 2019;157:97-108. https://doi.org/10.1053/j.gastro.2019.03.049
  50. Rodino-Janeiro BK, Vicario M, Alonso-Cotoner C, Pascua-Garcia R, Santos J. A Review of microbiota and irritable bowel syndrome: future in therapies. Adv Ther 2018;35:289-310. https://doi.org/10.1007/s12325-018-0673-5
  51. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013;500:541-6. https://doi.org/10.1038/nature12506
  52. Merino VR, Nakano V, Liu C, Song Y, Finegold SM, Avila-Campos MJ. Quantitative detection of enterotoxigenic Bacteroides fragilis subtypes isolated from children with and without diarrhea. J Clin Microbiol 2011;49:416-8. https://doi.org/10.1128/JCM.01556-10
  53. Distrutti E, Monaldi L, Ricci P, Fiorucci S. Gut microbiota role in irritable bowel syndrome: new therapeutic strategies. World J Gastroenterol 2016;22:2219-41. https://doi.org/10.3748/wjg.v22.i7.2219
  54. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014;505:559-63. https://doi.org/10.1038/nature12820
  55. Muegge BD, Kuczynski J, Knights D, Clemente JC, Gonzalez A, Fontana L, Henrissat B, Knight R, Gordon JI. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 2011;332:970-4. https://doi.org/10.1126/science.1198719
  56. Chey WD. Food: the main course to wellness and illness in patients with irritable bowel syndrome. Am J Gastroenterol 2016;111:366-71. https://doi.org/10.1038/ajg.2016.12
  57. Chey WD, Whelan K. Dietary guidelines for irritable bowel syndrome are important for gastroenterologists, dietitians and people with irritable bowel syndrome. J Hum Nutr Diet 2016;29:547-8. https://doi.org/10.1111/jhn.12413
  58. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012;486:207-14. https://doi.org/10.1038/nature11234
  59. Conlon MA, Bird AR, Clarke JM, Le Leu RK, Christophersen CT, Lockett TJ, Topping DL. Lowering of large bowel butyrate levels in healthy populations is unlikely to be beneficial. J Nutr 2015;145:1030-1. https://doi.org/10.3945/jn.114.209460
  60. Madsen KL. Interactions between microbes and the gut epithelium. J Clin Gastroenterol 2011;45 Suppl:S111-4. https://doi.org/10.1097/MCG.0b013e3182274249
  61. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J 2017;474:1823-36. https://doi.org/10.1042/BCJ20160510
  62. McKenzie YA, Bowyer RK, Leach H, Gulia P, Horobin J, O'Sullivan NA, Pettitt C, Reeves LB, Seamark L, Williams M, et al. British Dietetic Association systematic review and evidence-based practice guidelines for the dietary management of irritable bowel syndrome in adults (2016 update). J Hum Nutr Diet 2016;29:549-75. https://doi.org/10.1111/jhn.12385
  63. Halmos EP, Christophersen CT, Bird AR, Shepherd SJ, Gibson PR, Muir JG. Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut 2015;64:93-100. https://doi.org/10.1136/gutjnl-2014-307264
  64. Holscher HD. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017;8:172-84. https://doi.org/10.1080/19490976.2017.1290756
  65. Ma N, Tian Y, Wu Y, Ma X. Contributions of the interaction between dietary protein and gut microbiota to intestinal health. Curr Protein Pept Sci 2017;18:795-808.
  66. Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K, Abrouk M, Farahnik B, Nakamura M, Zhu TH, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med 2017;15:73. https://doi.org/10.1186/s12967-017-1175-y
  67. Tuck CJ, Vanner SJ. Dietary therapies for functional bowel symptoms: Recent advances, challenges, and future directions. Neurogastroenterol Motil 2018;30:e13238. https://doi.org/10.1111/nmo.13238
  68. Didari T, Mozaffari S, Nikfar S, Abdollahi M. Effectiveness of probiotics in irritable bowel syndrome: updated systematic review with meta-analysis. World J Gastroenterol 2015;21:3072-84. https://doi.org/10.3748/wjg.v21.i10.3072
  69. Grabitske HA, Slavin JL. Low-digestible carbohydrates in practice. J Am Diet Assoc 2008;108:1677-81. https://doi.org/10.1016/j.jada.2008.07.010
  70. Murray K, Wilkinson-Smith V, Hoad C, Costigan C, Cox E, Lam C, Marciani L, Gowland P, Spiller RC. Differential effects of FODMAPs (fermentable oligo-, di-, mono-saccharides and polyols) on small and large intestinal contents in healthy subjects shown by MRI. Am J Gastroenterol 2014;109:110-9. https://doi.org/10.1038/ajg.2013.386
  71. Mayer EA, Savidge T, Shulman RJ. Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology 2014;146:1500-12. https://doi.org/10.1053/j.gastro.2014.02.037
  72. Macfarlane GT, Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 2012;95:50-60. https://doi.org/10.5740/jaoacint.SGE_Macfarlane
  73. Farup PG, Rudi K, Hestad K. Faecal short-chain fatty acids - a diagnostic biomarker for irritable bowel syndrome? BMC Gastroenterol 2016;16:51. https://doi.org/10.1186/s12876-016-0446-z
  74. Tana C, Umesaki Y, Imaoka A, Handa T, Kanazawa M, Fukudo S. Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol Motil 2010;22:512-9, e114-5. https://doi.org/10.1111/j.1365-2982.2009.01427.x
  75. El-Salhy M, Ystad SO, Mazzawi T, Gundersen D. Dietary fiber in irritable bowel syndrome (Review). Int J Mol Med 2017;40:607-13. https://doi.org/10.3892/ijmm.2017.3072
  76. Clevers E, Tran M, Van Oudenhove L, Storsrud S, Bohn L, Tornblom H, Simren M. Adherence to diet low in fermentable carbohydrates and traditional diet for irritable bowel syndrome. Nutrition 2020;73:110719. https://doi.org/10.1016/j.nut.2020.110719
  77. Rajilic-Stojanovic M, Jonkers DM, Salonen A, Hanevik K, Raes J, Jalanka J, de Vos WM, Manichanh C, Golic N, Enck P, et al. Intestinal microbiota and diet in IBS: causes, consequences, or epiphenomena? Am J Gastroenterol 2015;110:278-87. https://doi.org/10.1038/ajg.2014.427
  78. Muir JG, Gibson PR. The low FODMAP diet for treatment of irritable bowel syndrome and other gastrointestinal disorders. Gastroenterol Hepatol (N Y) 2013;9:450-2.
  79. Shepherd SJ, Parker FC, Muir JG, Gibson PR. Dietary triggers of abdominal symptoms in patients with irritable bowel syndrome: randomized placebo-controlled evidence. Clin Gastroenterol Hepatol 2008;6:765-71. https://doi.org/10.1016/j.cgh.2008.02.058
  80. De Giorgio R, Volta U, Gibson PR. Sensitivity to wheat, gluten and FODMAPs in IBS: facts or fiction? Gut 2016;65:169-78. https://doi.org/10.1136/gutjnl-2015-309757
  81. Shepherd SJ, Lomer MC, Gibson PR. Short-chain carbohydrates and functional gastrointestinal disorders. Am J Gastroenterol 2013;108:707-17. https://doi.org/10.1038/ajg.2013.96
  82. McIntosh K, Reed DE, Schneider T, Dang F, Keshteli AH, De Palma G, Madsen K, Bercik P, Vanner S. FODMAPs alter symptoms and the metabolome of patients with IBS: a randomised controlled trial. Gut 2017;66:1241-51. https://doi.org/10.1136/gutjnl-2015-311339
  83. Halmos EP, Power VA, Shepherd SJ, Gibson PR, Muir JG. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology 2014;146:67-75.e5. https://doi.org/10.1053/j.gastro.2013.09.046
  84. Austin GL, Dalton CB, Hu Y, Morris CB, Hankins J, Weinland SR, Westman EC, Yancy WS Jr, Drossman DA. A very low-carbohydrate diet improves symptoms and quality of life in diarrhea-predominant irritable bowel syndrome. Clin Gastroenterol Hepatol 2009;7:706-708.e1. https://doi.org/10.1016/j.cgh.2009.02.023
  85. Shepherd SJ, Gibson PR. Fructose malabsorption and symptoms of irritable bowel syndrome: guidelines for effective dietary management. J Am Diet Assoc 2006;106:1631-9. https://doi.org/10.1016/j.jada.2006.07.010
  86. Marsh A, Eslick EM, Eslick GD. Does a diet low in FODMAPs reduce symptoms associated with functional gastrointestinal disorders? A comprehensive systematic review and meta-analysis. Eur J Nutr 2016;55:897-906. https://doi.org/10.1007/s00394-015-0922-1
  87. Staudacher HM, Whelan K. The low FODMAP diet: recent advances in understanding its mechanisms and efficacy in IBS. Gut 2017;66:1517-27. https://doi.org/10.1136/gutjnl-2017-313750
  88. Varju P, Farkas N, Hegyi P, Garami A, Szabo I, Illes A, Solymar M, Vincze A, Balasko M, Par G, et al. Low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diet improves symptoms in adults suffering from irritable bowel syndrome (IBS) compared to standard IBS diet: a metaanalysis of clinical studies. PLoS One 2017;12:e0182942. https://doi.org/10.1371/journal.pone.0182942
  89. Dionne J, Ford AC, Yuan Y, Chey WD, Lacy BE, Saito YA, Quigley EM, Moayyedi P. A systematic review and meta-analysis evaluating the efficacy of a gluten-free diet and a low FODMAPs diet in treating symptoms of irritable bowel syndrome. Am J Gastroenterol 2018;113:1290-300. https://doi.org/10.1038/s41395-018-0195-4
  90. Hustoft TN, Hausken T, Ystad SO, Valeur J, Brokstad K, Hatlebakk JG, Lied GA. Effects of varying dietary content of fermentable short-chain carbohydrates on symptoms, fecal microenvironment, and cytokine profiles in patients with irritable bowel syndrome. Neurogastroenterol Motil 2017;29:e12969. https://doi.org/10.1111/nmo.12969
  91. Bellini M, Tonarelli S, Nagy AG, Pancetti A, Costa F, Ricchiuti A, de Bortoli N, Mosca M, Marchi S, Rossi A. Low FODMAP diet: evidence, doubts, and hopes. Nutrients 2020;12:148. https://doi.org/10.3390/nu12010148
  92. Staudacher HM, Lomer MC, Anderson JL, Barrett JS, Muir JG, Irving PM, Whelan K. Fermentable carbohydrate restriction reduces luminal bifidobacteria and gastrointestinal symptoms in patients with irritable bowel syndrome. J Nutr 2012;142:1510-8. https://doi.org/10.3945/jn.112.159285
  93. Staudacher HM, Whelan K. Altered gastrointestinal microbiota in irritable bowel syndrome and its modification by diet: probiotics, prebiotics and the low FODMAP diet. Proc Nutr Soc 2016;75:306-18. https://doi.org/10.1017/S0029665116000021
  94. Chumpitazi BP, Hollister EB, Oezguen N, Tsai CM, McMeans AR, Luna RA, Savidge TC, Versalovic J, Shulman RJ. Gut microbiota influences low fermentable substrate diet efficacy in children with irritable bowel syndrome. Gut Microbes 2014;5:165-75. https://doi.org/10.4161/gmic.27923
  95. Chumpitazi BP, Cope JL, Hollister EB, Tsai CM, McMeans AR, Luna RA, Versalovic J, Shulman RJ. Randomised clinical trial: gut microbiome biomarkers are associated with clinical response to a low FODMAP diet in children with the irritable bowel syndrome. Aliment Pharmacol Ther 2015;42:418-27. https://doi.org/10.1111/apt.13286
  96. Daien CI, Pinget GV, Tan JK, Macia L. Detrimental impact of microbiota-accessible carbohydrate-deprived diet on gut and immune homeostasis: an overview. Front Immunol 2017;8:548. https://doi.org/10.3389/fimmu.2017.00548
  97. Chadwick VS, Chen W, Shu D, Paulus B, Bethwaite P, Tie A, Wilson I. Activation of the mucosal immune system in irritable bowel syndrome. Gastroenterology 2002;122:1778-83. https://doi.org/10.1053/gast.2002.33579
  98. O'Sullivan M, Clayton N, Breslin NP, Harman I, Bountra C, McLaren A, O'Morain CA. Increased mast cells in the irritable bowel syndrome. Neurogastroenterol Motil 2000;12:449-57. https://doi.org/10.1046/j.1365-2982.2000.00221.x
  99. Barbara G, Stanghellini V, De Giorgio R, Cremon C, Cottrell GS, Santini D, Pasquinelli G, Morselli-Labate AM, Grady EF, Bunnett NW, et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 2004;126:693-702. https://doi.org/10.1053/j.gastro.2003.11.055
  100. Akiho H, Ihara E, Nakamura K. Low-grade inflammation plays a pivotal role in gastrointestinal dysfunction in irritable bowel syndrome. World J Gastrointest Pathophysiol 2010;1:97-105. https://doi.org/10.4291/wjgp.v1.i3.97
  101. Sinagra E, Pompei G, Tomasello G, Cappello F, Morreale GC, Amvrosiadis G, Rossi F, Lo Monte AI, Rizzo AG, Raimondo D. Inflammation in irritable bowel syndrome: myth or new treatment target? World J Gastroenterol 2016;22:2242-55. https://doi.org/10.3748/wjg.v22.i7.2242
  102. El-Salhy M, Gundersen D. Diet in irritable bowel syndrome. Nutr J 2015;14:36. https://doi.org/10.1186/s12937-015-0022-3
  103. Shivappa N, Steck SE, Hurley TG, Hussey JR, Hebert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr 2014;17:1689-96. https://doi.org/10.1017/S1368980013002115
  104. Buscail C, Sabate JM, Bouchoucha M, Kesse-Guyot E, Hercberg S, Benamouzig R, Julia C. Western dietary pattern is associated with irritable bowel syndrome in the French NutriNet Cohort. Nutrients 2017;9:986. https://doi.org/10.3390/nu9090986
  105. Khayyatzadeh SS, Esmaillzadeh A, Saneei P, Keshteli AH, Adibi P. Dietary patterns and prevalence of irritable bowel syndrome in Iranian adults. Neurogastroenterol Motil 2016;28:1921-33. https://doi.org/10.1111/nmo.12895
  106. Calder PC, Ahluwalia N, Brouns F, Buetler T, Clement K, Cunningham K, Esposito K, Jonsson LS, Kolb H, Lansink M, et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br J Nutr 2011;106 Suppl 3:S5-78.
  107. Galland L. Diet and inflammation. Nutr Clin Pract 2010;25:634-40. https://doi.org/10.1177/0884533610385703
  108. Menotti A, Puddu PE. How the seven countries study contributed to the definition and development of the Mediterranean diet concept: a 50-year journey. Nutr Metab Cardiovasc Dis 2015;25:245-52. https://doi.org/10.1016/j.numecd.2014.12.001
  109. Hidalgo-Mora JJ, Garcia-Vigara A, Sanchez-Sanchez ML, Garcia-Perez MA, Tarin J, Cano A. The Mediterranean diet: a historical perspective on food for health. Maturitas 2020;132:65-9. https://doi.org/10.1016/j.maturitas.2019.12.002
  110. Trichopoulou A, Martinez-Gonzalez MA, Tong TY, Forouhi NG, Khandelwal S, Prabhakaran D, Mozaffarian D, de Lorgeril M. Definitions and potential health benefits of the Mediterranean diet: views from experts around the world. BMC Med 2014;12:112. https://doi.org/10.1186/1741-7015-12-112
  111. Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F, Gomez-Gracia E, Ruiz-Gutierrez V, Fiol M, Lapetra J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med 2018;378:e34. https://doi.org/10.1056/NEJMoa1800389
  112. Gambino CM, Accardi G, Aiello A, Candore G, Dara-Guccione G, Mirisola M, Procopio A, Taormina G, Caruso C. Effect of extra virgin olive oil and table olives on the immuneinflammatory responses: potential clinical applications. Endocr Metab Immune Disord Drug Targets 2018;18:14-22.
  113. Deiana M, Serra G, Corona G. Modulation of intestinal epithelium homeostasis by extra virgin olive oil phenolic compounds. Food Funct 2018;9:4085-99. https://doi.org/10.1039/C8FO00354H
  114. Farras M, Martinez-Gili L, Portune K, Arranz S, Frost G, Tondo M, Blanco-Vaca F. Modulation of the gut microbiota by olive oil phenolic compounds: implications for lipid metabolism, immune system, and obesity. Nutrients 2020;12:2200. https://doi.org/10.3390/nu12082200
  115. Salas-Salvado J, Casas-Agustench P, Murphy MM, Lopez-Uriarte P, Bullo M. The effect of nuts on inflammation. Asia Pac J Clin Nutr 2008;17 Suppl 1:333-6.
  116. Holscher HD, Guetterman HM, Swanson KS, An R, Matthan NR, Lichtenstein AH, Novotny JA, Baer DJ. Walnut consumption alters the gastrointestinal microbiota, microbially derived secondary bile acids, and health markers in healthy adults: a randomized controlled trial. J Nutr 2018;148:861-7. https://doi.org/10.1093/jn/nxy004
  117. Bamberger C, Rossmeier A, Lechner K, Wu L, Waldmann E, Fischer S, Stark RG, Altenhofer J, Henze K, Parhofer KG. A walnut-enriched diet affects gut microbiome in healthy caucasian subjects: a randomized, controlled trial. Nutrients 2018;10:244. https://doi.org/10.3390/nu10020244
  118. Zito FP, Polese B, Vozzella L, Gala A, Genovese D, Verlezza V, Medugno F, Santini A, Barrea L, Cargiolli M, et al. Good adherence to mediterranean diet can prevent gastrointestinal symptoms: a survey from Southern Italy. World J Gastrointest Pharmacol Ther 2016;7:564-71. https://doi.org/10.4292/wjgpt.v7.i4.564
  119. Shin PK, Park SJ, Kim MS, Kwon DY, Kim MJ, Kim K, Chun S, Lee HJ, Choi SW. A traditional Korean diet with a low dietary inflammatory index increases anti-inflammatory IL-10 and decreases pro-inflammatory NF-κB in a small dietary intervention study. Nutrients 2020;12:2468. https://doi.org/10.3390/nu12082468
  120. Barbalho SM, Goulart RA, Araujo AC, Guiguer EL, Bechara MD. Irritable bowel syndrome: a review of the general aspects and the potential role of vitamin D. Expert Rev Gastroenterol Hepatol 2019;13:345-59. https://doi.org/10.1080/17474124.2019.1570137
  121. Jalili M, Vahedi H, Poustchi H, Hekmatdoost A. Effects of vitamin D supplementation in patients with irritable bowel syndrome: a randomized, double-blind, placebo-controlled clinical trial. Int J Prev Med 2019;10:16. https://doi.org/10.4103/ijpvm.IJPVM_512_17
  122. Khalighi Sikaroudi M, Mokhtare M, Janani L, Faghihi Kashani AH, Masoodi M, Agah S, Abbaspour N, Dehnad A, Shidfar F. Vitamin D3 supplementation in diarrhea-predominant irritable bowel syndrome patients: the effects on symptoms improvement, serum corticotropin-releasing hormone, and interleukin-6 - A randomized clinical trial. Complement Med Res 2020;27:302-9. https://doi.org/10.1159/000506149
  123. Khalighi Sikaroudi M, Mokhtare M, Shidfar F, Janani L, Faghihi Kashani A, Masoodi M, Agah S, Dehnad A, Shidfar S. Effects of vitamin D3 supplementation on clinical symptoms, quality of life, serum serotonin (5-hydroxytryptamine), 5-hydroxy-indole acetic acid, and ratio of 5-HIAA/5-HT in patients with diarrheapredominant irritable bowel syndrome: a randomized clinical trial. EXCLI J 2020;19:652-67.
  124. Shi SM, Wen YL, Hou HB, Liu HX. Effectiveness of vitamin D for irritable bowel syndrome: a protocol for a systematic review of randomized controlled trial. Medicine (Baltimore) 2019;98:e14723. https://doi.org/10.1097/MD.0000000000014723
  125. Ligaarden SC, Farup PG. Low intake of vitamin B6 is associated with irritable bowel syndrome symptoms. Nutr Res 2011;31:356-61. https://doi.org/10.1016/j.nutres.2011.04.001
  126. Salari-Moghaddam A, Keshteli AH, Esmaillzadeh A, Adibi P. Empirically derived food-based inflammatory potential of the diet, irritable bowel syndrome, and its severity. Nutrition 2019;63-64:141-7. https://doi.org/10.1016/j.nut.2019.02.004
  127. Zheng J, Hoffman KL, Chen JS, Shivappa N, Sood A, Browman GJ, Dirba DD, Hanash S, Wei P, Hebert JR, et al. Dietary inflammatory potential in relation to the gut microbiome: results from a cross-sectional study. Br J Nutr 2020;124:931-42. https://doi.org/10.1017/S0007114520001853
  128. De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, Serrazanetti DI, Di Cagno R, Ferrocino I, Lazzi C, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 2016;65:1812-21. https://doi.org/10.1136/gutjnl-2015-309957
  129. Cozma-Petrut A, Loghin F, Miere D, Dumitrascu DL. Diet in irritable bowel syndrome: What to recommend, not what to forbid to patients! World J Gastroenterol 2017;23:3771-83. https://doi.org/10.3748/wjg.v23.i21.3771
  130. Just S, Mondot S, Ecker J, Wegner K, Rath E, Gau L, Streidl T, Hery-Arnaud G, Schmidt S, Lesker TR, et al. The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism. Microbiome 2018;6:134. https://doi.org/10.1186/s40168-018-0510-8
  131. Abulizi N, Quin C, Brown K, Chan YK, Gill SK, Gibson DL. Gut mucosal proteins and bacteriome are shaped by the saturation index of dietary lipids. Nutrients 2019;11:418. https://doi.org/10.3390/nu11020418
  132. Shen W, Wolf PG, Carbonero F, Zhong W, Reid T, Gaskins HR, McIntosh MK. Intestinal and systemic inflammatory responses are positively associated with sulfidogenic bacteria abundance in high-fat-fed male C57BL/6J mice. J Nutr 2014;144:1181-7. https://doi.org/10.3945/jn.114.194332
  133. Muralidharan J, Galie S, Hernandez-Alonso P, Bullo M, Salas-Salvado J. Plant-based fat, dietary patterns rich in vegetable fat and gut microbiota modulation. Front Nutr 2019;6:157. https://doi.org/10.3389/fnut.2019.00157
  134. Patrone V, Minuti A, Lizier M, Miragoli F, Lucchini F, Trevisi E, Rossi F, Callegari ML. Differential effects of coconut versus soy oil on gut microbiota composition and predicted metabolic function in adult mice. BMC Genomics 2018;19:808. https://doi.org/10.1186/s12864-018-5202-z
  135. Bailey MA, Holscher HD. Microbiome-mediated effects of the Mediterranean diet on inflammation. Adv Nutr 2018;9:193-206. https://doi.org/10.1093/advances/nmy013
  136. Mani V, Hollis JH, Gabler NK. Dietary oil composition differentially modulates intestinal endotoxin transport and postprandial endotoxemia. Nutr Metab (Lond) 2013;10:6. https://doi.org/10.1186/1743-7075-10-6
  137. Ford AC, Quigley EM, Lacy BE, Lembo AJ, Saito YA, Schiller LR, Soffer EE, Spiegel BM, Moayyedi P. Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. Am J Gastroenterol 2014;109:1547-61. https://doi.org/10.1038/ajg.2014.202
  138. Wilson B, Rossi M, Dimidi E, Whelan K. Prebiotics in irritable bowel syndrome and other functional bowel disorders in adults: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2019;109:1098-111. https://doi.org/10.1093/ajcn/nqy376
  139. Staudacher HM, Lomer MC, Farquharson FM, Louis P, Fava F, Franciosi E, Scholz M, Tuohy KM, Lindsay JO, Irving PM, et al. A diet low in FODMAPs reduces symptoms in patients with irritable bowel syndrome and a probiotic restores bifidobacterium species: a randomized controlled trial. Gastroenterology 2017;153:936-47. https://doi.org/10.1053/j.gastro.2017.06.010
  140. Staudacher HM, Scholz M, Lomer MC, Ralph FS, Irving PM, Lindsay JO, Fava F, Tuohy K, Whelan K. Gut microbiota associations with diet in irritable bowel syndrome and the effect of low FODMAP diet and probiotics. Clin Nutr 2021;40:1861-70. https://doi.org/10.1016/j.clnu.2020.10.013

Cited by

  1. Nutritional Contributions and Health Associations of Traditional Fermented Foods vol.7, pp.4, 2021, https://doi.org/10.3390/fermentation7040289
  2. Associations of clinical features of functional bowel disorders with gut microbiota characteristics in adolescents: A pilot study vol.6, pp.6, 2021, https://doi.org/10.29413/abs.2021-6.6-2.8