DOI QR코드

DOI QR Code

The Role of Gut Microbiota in Modulating Tumor Growth and Anticancer Agent Efficacy

  • Kim, Jaeho (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Heung Kyu (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2021.02.03
  • Accepted : 2021.03.20
  • Published : 2021.05.31

Abstract

An increasing number of studies have revealed an interaction between gut microbiota and tumors. The enrichment of specific bacteria strains in the intestines has been found to modulate tumor growth and influence the mechanisms of tumor treatment. Various bacteria are involved in modulating the effects of chemotherapeutic drugs currently used to treat patients with cancer, and they affect not only gastrointestinal tract tumors but also distant organ tumors. In addition, changes in the gut microbiota are known to be involved in the antitumor immune response as well as the modulation of the intestinal immune system. As a result, the gut microbiota plays an important role in modulating the efficacy of immune checkpoint inhibitors. Therefore, gut microbiota could be considered as an adjuvant treatment option with other cancer treatment or as another marker for predicting treatment response. In this review, we examine how gut microbiota affects cancer treatments.

Keywords

Acknowledgement

This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) & funded by the Korean government (MSIT) (No. 2021M3A9H3015688).

References

  1. Alexander, J.L., Wilson, I.D., Teare, J., Marchesi, J.R., Nicholson, J.K., and Kinross, J.M. (2017). Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat. Rev. Gastroenterol. Hepatol. 14, 356-365. https://doi.org/10.1038/nrgastro.2017.20
  2. Baruch, E.N., Youngster, I., Ben-Betzalel, G., Ortenberg, R., Lahat, A., Katz, L., Adler, K., Dick-Necula, D., Raskin, S., Bloch, N., et al. (2021). Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371, 602-609. https://doi.org/10.1126/science.abb5920
  3. Choi, J. and Lee, S.Y. (2020). Clinical characteristics and treatment of immune-related adverse events of immune checkpoint inhibitors. Immune Netw. 20, e9. https://doi.org/10.4110/in.2020.20.e9
  4. Coleman, R.L., Monk, B.J., Sood, A.K., and Herzog, T.J. (2013). Latest research and treatment of advanced-stage epithelial ovarian cancer. Nat. Rev. Clin. Oncol. 10, 211-224. https://doi.org/10.1038/nrclinonc.2013.5
  5. Daillere, R., Vetizou, M., Waldschmitt, N., Yamazaki, T., Isnard, C., PoirierColame, V., Duong, C.P.M., Flament, C., Lepage, P., Roberti, M.P., et al. (2016). Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 45, 931-943. https://doi.org/10.1016/j.immuni.2016.09.009
  6. Davar, D., Dzutsev, A.K., McCulloch, J.A., Rodrigues, R.R., Chauvin, J.M., Morrison, R.M., Deblasio, R.N., Menna, C., Ding, Q., Pagliano, O., et al. (2021). Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371, 595-602. https://doi.org/10.1126/science.abf3363
  7. Finlay, B.B., Goldszmid, R., Honda, K., Trinchieri, G., Wargo, J., and Zitvogel, L.J.N.R.I. (2020). Can we harness the microbiota to enhance the efficacy of cancer immunotherapy? Nat. Rev. Immunol. 20, 522-528. https://doi.org/10.1038/s41577-020-0374-6
  8. Gaiser, R.A., Halimi, A., Alkharaan, H., Lu, L., Davanian, H., Healy, K., Hugerth, L.W., Ateeb, Z., Valente, R., Fernandez Moro, C., et al. (2019). Enrichment of oral microbiota in early cystic precursors to invasive pancreatic cancer. Gut 68, 2186-2194. https://doi.org/10.1136/gutjnl-2018-317458
  9. Garcia-Gonzalez, A.P., Ritter, A.D., Shrestha, S., Andersen, E.C., Yilmaz, L.S., and Walhout, A.J.M. (2017). Bacterial metabolism affects the C. elegans response to cancer chemotherapeutics. Cell 169, 431-441.e8. https://doi.org/10.1016/j.cell.2017.03.046
  10. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators (2016). Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1545-1602. https://doi.org/10.1016/S0140-6736(16)31678-6
  11. Geller, L.T., Barzily-Rokni, M., Danino, T., Jonas, O.H., Shental, N., Nejman, D., Gavert, N., Zwang, Y., Cooper, Z.A., Shee, K., et al. (2017). Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357, 1156-1160. https://doi.org/10.1126/science.aah5043
  12. Gopalakrishnan, V., Spencer, C.N., Nezi, L., Reuben, A., Andrews, M.C., Karpinets, T.V., Prieto, P.A., Vicente, D., Hoffman, K., Wei, S.C., et al. (2018). Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97-103. https://doi.org/10.1126/science.aan4236
  13. Hashim, D., Boffetta, P., La Vecchia, C., Rota, M., Bertuccio, P., Malvezzi, M., and Negri, E. (2016). The global decrease in cancer mortality: trends and disparities. Ann. Oncol. 27, 926-933. https://doi.org/10.1093/annonc/mdw027
  14. Hsieh, Y.Y., Tung, S.Y., Pan, H.Y., Yen, C.W., Xu, H.W., Lin, Y.J., Deng, Y.F., Hsu, W.T., Wu, C.S., and Li, C. (2018). Increased abundance of Clostridium and Fusobacterium in gastric microbiota of patients with gastric cancer in Taiwan. Sci. Rep. 8, 158. https://doi.org/10.1038/s41598-017-18596-0
  15. Iida, N., Dzutsev, A., Stewart, C.A., Smith, L., Bouladoux, N., Weingarten, R.A., Molina, D.A., Salcedo, R., Back, T., Cramer, S., et al. (2013). Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342, 967-970. https://doi.org/10.1126/science.1240527
  16. Iizumi, T., Battaglia, T., Ruiz, V., and Perez Perez, G.I. (2017). Gut microbiome and antibiotics. Arch. Med. Res. 48, 727-734. https://doi.org/10.1016/j.arcmed.2017.11.004
  17. Jacouton, E., Michel, M.L., Torres-Maravilla, E., Chain, F., Langella, P., and Bermudez-Humaran, L.G. (2018). Elucidating the immune-related mechanisms by which probiotic strain Lactobacillus casei BL23 displays anti-tumoral properties. Front. Microbiol. 9, 3281. https://doi.org/10.3389/fmicb.2018.03281
  18. Jan, G., Belzacq, A.S., Haouzi, D., Rouault, A., Metivier, D., Kroemer, G., and Brenner, C. (2002). Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ. 9, 179-188. https://doi.org/10.1038/sj.cdd.4400935
  19. Jandhyala, S.M., Talukdar, R., Subramanyam, C., Vuyyuru, H., Sasikala, M., and Nageshwar Reddy, D. (2015). Role of the normal gut microbiota. World J. Gastroenterol. 21, 8787-8803. https://doi.org/10.3748/wjg.v21.i29.8787
  20. Ji, B. and Nielsen, J. (2015). From next-generation sequencing to systematic modeling of the gut microbiome. Front. Genet. 6, 219.
  21. Jung, J., Surh, C.D., and Lee, Y.J. (2019). Microbial colonization at early life promotes the development of diet-induced CD8αβ intraepithelial T cells. Mol. Cells 42, 313-320. https://doi.org/10.14348/molcells.2019.2431
  22. Kim, C.H., Park, J., and Kim, M. (2014). Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation. Immune Netw. 14, 277-288. https://doi.org/10.4110/in.2014.14.6.277
  23. Kodawara, T., Higashi, T., Negoro, Y., Kamitani, Y., Igarashi, T., Watanabe, K., Tsukamoto, H., Yano, R., Masada, M., Iwasaki, H.J.B., et al. (2016). The inhibitory effect of ciprofloxacin on the β-glucuronidase-mediated deconjugation of the irinotecan metabolite SN-38-G. Basic Clin. Pharmacol. Toxicol. 118, 333-337. https://doi.org/10.1111/bcpt.12511
  24. Konishi, H., Fujiya, M., Tanaka, H., Ueno, N., Moriichi, K., Sasajima, J., Ikuta, K., Akutsu, H., Tanabe, H., and Kohgo, Y. (2016). Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nat. Commun. 7, 12365. https://doi.org/10.1038/ncomms12365
  25. Ku, K., Park, I., Kim, D., Kim, J., Jang, S., Choi, M., Choe, H.K., and Kim, K. (2020). Gut microbial metabolites induce changes in circadian oscillation of clock gene expression in the mouse embryonic fibroblasts. Mol. Cells 43, 276-285. https://doi.org/10.14348/molcells.2020.2309
  26. Kuen, D.S., Kim, B.S., and Chung, Y. (2020). IL-17-producing cells in tumor immunity: friends or foes? Immune Netw. 20, e6. https://doi.org/10.4110/in.2020.20.e6
  27. Laborda-Illanes, A., Sanchez-Alcoholado, L., Dominguez-Recio, M.E., Jimenez-Rodriguez, B., Lavado, R., Comino-Mendez, I., Alba, E., and Queipo-Ortuno, M.I. (2020). Breast and gut microbiota action mechanisms in breast cancer pathogenesis and treatment. Cancers (Basel) 12, 2465. https://doi.org/10.3390/cancers12092465
  28. Lee, S.H., Cho, S.Y., Yoon, Y., Park, C., Sohn, J., Jeong, J.J., Jeon, B.N., Jang, M., An, C., Lee, S., et al. (2021). Bifidobacterium bifidum strains synergize with immune checkpoint inhibitors to reduce tumour burden in mice. Nat. Microbiol. 6, 277-288. https://doi.org/10.1038/s41564-020-00831-6
  29. Lehouritis, P., Cummins, J., Stanton, M., Murphy, C.T., McCarthy, F.O., Reid, G., Urbaniak, C., Byrne, W.L., and Tangney, M. (2015). Local bacteria affect the efficacy of chemotherapeutic drugs. Sci. Rep. 5, 14554. https://doi.org/10.1038/srep14554
  30. Long, X., Wong, C.C., Tong, L., Chu, E.S.H., Ho Szeto, C., Go, M.Y.Y., Coker, O.O., Chan, A.W.H., Chan, F.K.L., Sung, J.J.Y., et al. (2019). Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nat. Microbiol. 4, 2319-2330. https://doi.org/10.1038/s41564-019-0541-3
  31. Louis, P., Hold, G.L., and Flint, H.J. (2014). The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 12, 661-672. https://doi.org/10.1038/nrmicro3344
  32. Matson, V., Fessler, J., Bao, R., Chongsuwat, T., Zha, Y., Alegre, M.L., Luke, J.J., and Gajewski, T.F.J.S. (2018). The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104-108. https://doi.org/10.1126/science.aao3290
  33. Miller, K.D., Nogueira, L., Mariotto, A.B., Rowland, J.H., Yabroff, K.R., Alfano, C.M., Jemal, A., Kramer, J.L., and Siegel, R.L. (2019). Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin. 69, 363-385. https://doi.org/10.3322/caac.21565
  34. Nevala-Plagemann, C., Hidalgo, M., and Garrido-Laguna, I. (2020). From state-of-the-art treatments to novel therapies for advanced-stage pancreatic cancer. Nat. Rev. Clin. Oncol. 17, 108-123. https://doi.org/10.1038/s41571-019-0281-6
  35. Panek, M., Cipcic Paljetak, H., Baresic, A., Peric, M., Matijasic, M., Lojkic, I., Vranesic Bender, D., Krznaric, Z., and Verbanac, D. (2018). Methodology challenges in studying human gut microbiota - effects of collection, storage, DNA extraction and next generation sequencing technologies. Sci. Rep. 8, 5143. https://doi.org/10.1038/s41598-018-23296-4
  36. Pflug, N., Kluth, S., Vehreschild, J.J., Bahlo, J., Tacke, D., Biehl, L., Eichhorst, B., Fischer, K., Cramer, P., Fink, A.M., et al. (2016). Efficacy of antineoplastic treatment is associated with the use of antibiotics that modulate intestinal microbiota. Oncoimmunology 5, e1150399. https://doi.org/10.1080/2162402X.2016.1150399
  37. Routy, B., Le Chatelier, E., Derosa, L., Duong, C.P.M., Alou, M.T., Daillere, R., Fluckiger, A., Messaoudene, M., Rauber, C., Roberti, M.P., et al. (2018). Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91-97. https://doi.org/10.1126/science.aan3706
  38. Roy, S. and Trinchieri, G. (2017). Microbiota: a key orchestrator of cancer therapy. Nat. Rev. Cancer 17, 271-285. https://doi.org/10.1038/nrc.2017.13
  39. Rubinstein, M.R., Wang, X., Liu, W., Hao, Y., Cai, G., and Han, Y.W. (2013). Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14, 195-206. https://doi.org/10.1016/j.chom.2013.07.012
  40. Scott, T.A., Quintaneiro, L.M., Norvaisas, P., Lui, P.P., Wilson, M.P., Leung, K.Y., Herrera-Dominguez, L., Sudiwala, S., Pessia, A., Clayton, P.T., et al. (2017). Host-microbe co-metabolism dictates cancer drug efficacy in C. elegans. Cell 169, 442-456.e18. https://doi.org/10.1016/j.cell.2017.03.040
  41. Sekirov, I., Russell, S.L., Antunes, L.C., and Finlay, B.B. (2010). Gut microbiota in health and disease. Physiol. Rev. 90, 859-904. https://doi.org/10.1152/physrev.00045.2009
  42. Selwyn, F.P., Cui, J.Y., and Klaassen, C.D. (2015). RNA-Seq quantification of hepatic drug processing genes in germ-free mice. Drug Metab. Dispos. 43, 1572-1580. https://doi.org/10.1124/dmd.115.063545
  43. Sender, R., Fuchs, S., and Milo, R. (2016). Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533. https://doi.org/10.1371/journal.pbio.1002533
  44. Sethi, V., Kurtom, S., Tarique, M., Lavania, S., Malchiodi, Z., Hellmund, L., Zhang, L., Sharma, U., Giri, B., Garg, B., et al. (2018). Gut microbiota promotes tumor growth in mice by modulating immune response. Gastroenterology 155, 33-37.e6. https://doi.org/10.1053/j.gastro.2018.04.001
  45. Shin, J.M., Luo, T., Kamarajan, P., Fenno, J.C., Rickard, A.H., and Kapila, Y.L. (2017). Microbial communities associated with primary and metastatic head and neck squamous cell carcinoma - a high fusobacterial and low streptococcal signature. Sci. Rep. 7, 9934. https://doi.org/10.1038/s41598-017-09786-x
  46. Shui, L., Yang, X., Li, J., Yi, C., Sun, Q., and Zhu, H. (2019). Gut microbiome as a potential factor for modulating resistance to cancer immunotherapy. Front. Immunol. 10, 2989. https://doi.org/10.3389/fimmu.2019.02989
  47. Sivan, A., Corrales, L., Hubert, N., Williams, J.B., Aquino-Michaels, K., Earley, Z.M., Benyamin, F.W., Lei, Y.M., Jabri, B., Alegre, M.L., et al. (2015). Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084-1089. https://doi.org/10.1126/science.aac4255
  48. Takagi, A., Ikemura, H., Matsuzaki, T., Sato, M., Nomoto, K., Morotomi, M., and Yokokura, T. (2008). Relationship between the in vitro response of dendritic cells to Lactobacillus and prevention of tumorigenesis in the mouse. J. Gastroenterol. 43, 661-669. https://doi.org/10.1007/s00535-008-2212-7
  49. Tanoue, T., Morita, S., Plichta, D.R., Skelly, A.N., Suda, W., Sugiura, Y., Narushima, S., Vlamakis, H., Motoo, I., Sugita, K., et al. (2019). A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565, 600-605. https://doi.org/10.1038/s41586-019-0878-z
  50. Tomasetti, C. and Vogelstein, B. (2015). Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78-81. https://doi.org/10.1126/science.1260825
  51. Uribe-Herranz, M., Rafail, S., Beghi, S., Gil-de-Gomez, L., Verginadis, I., Bittinger, K., Pustylnikov, S., Pierini, S., Perales-Linares, R., Blair, I.A., et al. (2020). Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response. J. Clin. Invest. 130, 466-479. https://doi.org/10.1172/jci124332
  52. Vetizou, M., Pitt, J.M., Daillere, R., Lepage, P., Waldschmitt, N., Flament, C., Rusakiewicz, S., Routy, B., Roberti, M.P., Duong, C.P., et al. (2015). Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079-1084. https://doi.org/10.1126/science.aad1329
  53. Viaud, S., Saccheri, F., Mignot, G., Yamazaki, T., Daillere, R., Hannani, D., Enot, D.P., Pfirschke, C., Engblom, C., Pittet, M.J., et al. (2013). The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971-976. https://doi.org/10.1126/science.1240537
  54. Waldmann, T.A. (2003). Immunotherapy: past, present and future. Nat. Med. 9, 269-277. https://doi.org/10.1038/nm0303-269
  55. Wallace, B.D., Wang, H., Lane, K.T., Scott, J.E., Orans, J., Koo, J.S., Venkatesh, M., Jobin, C., Yeh, L.A., Mani, S., et al. (2010). Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330, 831-835. https://doi.org/10.1126/science.1191175
  56. Wang, T., Cai, G., Qiu, Y., Fei, N., Zhang, M., Pang, X., Jia, W., Cai, S., and Zhao, L. (2012). Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 6, 320-329. https://doi.org/10.1038/ismej.2011.109
  57. Wong, S.H., Kwong, T.N.Y., Wu, C.Y., and Yu, J. (2019). Clinical applications of gut microbiota in cancer biology. Semin. Cancer Biol. 55, 28-36. https://doi.org/10.1016/j.semcancer.2018.05.003
  58. Wu, S., Rhee, K.J., Zhang, M., Franco, A., and Sears, C.L. (2007). Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and gamma-secretase-dependent E-cadherin cleavage. J. Cell Sci. 120(Pt 11), 1944-1952. https://doi.org/10.1242/jcs.03455
  59. Xu, C., Ruan, B., Jiang, Y., Xue, T., Wang, Z., Lu, H., Wei, M., Wang, S., Ye, Z., Zhai, D.J.B., et al. (2017). Antibiotics-induced gut microbiota dysbiosis promotes tumor initiation via affecting APC-Th1 development in mice. Biochem. Biophys. Res. Commun. 488, 418-424. https://doi.org/10.1016/j.bbrc.2017.05.071
  60. Yamamura, K., Baba, Y., Nakagawa, S., Mima, K., Miyake, K., Nakamura, K., Sawayama, H., Kinoshita, K., Ishimoto, T., Iwatsuki, M., et al. (2016). Human microbiome Fusobacterium nucleatum in esophageal cancer tissue is associated with prognosis. Clin. Cancer Res. 22, 5574-5581. https://doi.org/10.1158/1078-0432.CCR-16-1786
  61. Yu, A.I., Zhao, L., Eaton, K.A., Ho, S., Chen, J., Poe, S., Becker, J., Gonzalez, A., McKinstry, D., Hasso, M., et al. (2020). Gut microbiota modulate CD8 T cell responses to influence colitis-associated tumorigenesis. Cell Rep. 31, 107471. https://doi.org/10.1016/j.celrep.2020.03.035
  62. Yu, T., Guo, F., Yu, Y., Sun, T., Ma, D., Han, J., Qian, Y., Kryczek, I., Sun, D., Nagarsheth, N., et al. (2017). Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170, 548-563.e16. https://doi.org/10.1016/j.cell.2017.07.008
  63. Yuan, L., Zhang, S., Li, H., Yang, F., Mushtaq, N., Ullah, S., Shi, Y., An, C., and Xu, J. (2018). The influence of gut microbiota dysbiosis to the efficacy of 5-Fluorouracil treatment on colorectal cancer. Biomed. Pharmacother. 108, 184-193. https://doi.org/10.1016/j.biopha.2018.08.165
  64. Zhu, Q., Gao, R., Wu, W., and Qin, H. (2013). The role of gut microbiota in the pathogenesis of colorectal cancer. Tumour Biol. 34, 1285-1300. https://doi.org/10.1007/s13277-013-0684-4
  65. Zitvogel, L., Galluzzi, L., Viaud, S., Vetizou, M., Daillere, R., Merad, M., and Kroemer, G. (2015). Cancer and the gut microbiota: an unexpected link. Sci. Transl. Med. 7, 271ps1.