• Title/Summary/Keyword: guided ultrasonic waves

Search Result 99, Processing Time 0.023 seconds

Attenuation Characterization of L(0,2) Guided Wave Mode through Numerical Analyses and Model Experiments with Buried Steel Pipe (수치해석과 모형실험을 통한 매립배관에서의 유도초음파 L(0,2) 모드의 감쇠 특성 평가)

  • Lee, Juwon;Na, Won-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.16-23
    • /
    • 2013
  • By carrying out numerical analyses and model experiments, this paper presents the attenuation characterization of an L(0,2) guided ultrasonic wave propagating in a buried steel pipe. From this investigation, we first find that the L(0,2) mode has a better attenuation property. Second, it is shown from the numerical analyses that the attenuation increases with increases in the soil embedment length (0, 500, 1000, and 1500 mm) and degrees of saturation (0, 50, 99, and 100%). Third, it is also shown from the model experiment that the attenuation increases as the embedment lengths and soil moisture quantities (0, 10, 20, and 30 kg) increase. Finally, we find that an exponential extrapolation gives a better attenuation prediction because the extrapolation gives similar attenuation patterns between the numerical and experimental results.

Approaches of the Computaional Mechanics on the Stress Wave Analysis (응력파동해석에 대한 전산역학적 접근방법)

  • 조윤호;정현규;김승호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.415-429
    • /
    • 2002
  • Various modeling techniques for ultrasonic wave propagation and scattering problems in finite solid media are presented. Elastodynamic boundary value problems in inhomogeneous multi-layered plate-like structures are set up for modal analysis of guided wave propagation and numerically solved to obtain dispersion curves which show propagation characteristics of guided waves. As a powerful modeling tool to overcome such numerical difficulties in wave scattering problems as the geometrical complexity and mode conversion, the Boundary Element Method(BEM) is introduced and is combined with the normal mode expansion technique to develop the hybrid BEM, an efficient technique for modeling multi-mode conversion of guided wave scattering problems.

  • PDF

Detection of Thermal Ratcheting Deformation for Cylindrical Shells by Ultrasonic Guided Wave (유도초음파를 이용한 원통형 쉘의 열 라체팅 변형 탐지)

  • Joo, Young-Sang;Lee, Hyeong-Yeon;Kim, Jong-Bum;Park, Chang-Gyu;Lee, Jae-Han
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.297-305
    • /
    • 2006
  • The thermal ratcheting deformation at the reactor baffle and upper internal structure of the liquid metal reactor (LMR) can occur due to movement of the hot sodium free surface. In in-service inspection of reactor internals of LMR, a new inspection technique should be developed for the detection of the thermal ratcheting damage. In this study, an inspection technique using ultrasonic guided wave is proposed for the detection of the thermal ratcheting damage of cylindrical vessels. A 316L stainless steel cylindrical shell specimen has been prepared. The thermal ratchet structural tests were cyclically performed by heat-up up to $550^{\circ}C$ with steep temperature gradients along the axial direction after cool-down by cooling water. Ultrasonic guided wave propagation has been characterized by analysis of dispersion curve of the stainless steel plate. The zero-order antisymmetric $A_0$ guided wave has been selected as the optimal mode for detection of the ratcheting deformation. It is confirmed that the thermal ratcheting deformation can be detected by the measurement of transit time difference of circumferentially propagated $A_0$ guided waves.

Design and Fabrication of Magnetostrictive Transducers for Scanning OPMT Development (주사형 OPMT 개발을 위한 자왜형 초음파 변환기 설계 및 제작)

  • Lee, Ho-Cheol;Kim, Hyeng-Yoon;Kim, Y.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.856-859
    • /
    • 2005
  • The OPMT(Orientation-adjustable Patch-type Magnetostrictive Transducer) was proposed as a tool for generating and measuring the ultrasonic Lamb wave in plate type structures. This sensor has a lot of new features compared to the traditional piezo-type ultrasonic transducers. As an example, it does not need any kind of wiring for lunching or measuring ultrasonic waves. But it has also definite limitation for practical usage as a nondestructive testing tool in that it cannot help rotating the direction of ultrasonic wave manually. The idea for 'scanning OPMT' is proposed in this respect. Two kinds of basic ideas for rotating the wave direction not manually but electrically are proposed. The fabrication of the transducer and the testing for Identifying the primary characteristics are done for one of the proposed transducers. The results says that there are the possibilities as a new tool for NDE in that the proposed transducer follows well the characteristics of the traditional OPMT. But there are also the 1imitations to overcome.

  • PDF

Modeling of Elastodynamic Problems in Finite Solid Media (유한 고체내 탄성동역학 문제의 모델링)

  • Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.2
    • /
    • pp.138-149
    • /
    • 2000
  • Various modeling techniques for ultrasonic wave propagation and scattering problems in finite solid media are presented. Elastodynamic boundary value problems in inhomogeneous multi-layered plate-like structures are set up for modal analysis of guided wave propagation and numerically solved to obtain dispersion curves which show propagation characteristics of guided waves. As a powerful modeling tool to overcome such numerical difficulties in wave scattering problems as the geometrical complexity and mode conversion, the Boundary Element Method(BEM) is introduced and is combined with the normal mode expansion technique to develop the hybrid BEM, an efficient technique for modeling multi mode conversion of guided wave scattering problems. Time dependent wave forms are obtained through the inverse Fourier transformation of the numerical solutions in the frequency domain. 3D BEM program development is underway to model more practical ultrasonic wave signals. Some encouraging numerical results have recently been obtained in comparison with the analytical solutions for wave propagation in a bar subjected to time harmonic longitudinal excitation. It is expected that the presented modeling techniques for elastic wave propagation and scattering can be applied to establish quantitative nondestructive evaluation techniques in various ways.

  • PDF

A migration based reconstruction algorithm for the imaging of defects in a plate using a compact array

  • Muralidharan, Ajith;Balasubramaniam, Krishnan;Krishnamurthy, C.V.
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.449-464
    • /
    • 2008
  • An array based, outward monitoring, ultrasonic guided wave based SHM technique using a single transmitter and multiple receivers (STMR), with a small footprint is discussed here. The previous implementation of such SHM arrays used a phase-reconstruction algorithm (that is similar to the beam-steering algorithm) for the imaging of reflectors. These algorithms were found to have a limitation during the imaging of defects/reflectors that are present in the "near-field" of the array. Here, the "near-field" is defined to be approximately 3-4 times the diameter of the compact array. This limitation is caused by approximations in the beam-steering reconstruction algorithm. In this paper, a migration-based reconstruction algorithm, with dispersion correction in the frequency domain, is discussed. Simulation and experimental studies are used to demonstrate that this algorithm improves the reconstruction in the "near-field" without decreasing the ability to reconstruct defects in the "far-field" in both isotropic and anisotropic plates.

A Study on the Optimum Generation Condition of Ultrasonic Guided Waves for Insulation Pipelines (단열된 배관의 유도초음파 최적 발생조건 선정에 관한 연구)

  • Lee, Dong-Hoon;Cho, Hyun-Joon;Kang, To;Park, Dong-Jun;Kim, Byung-Duk;Huh, Yun-Sil;Lee, Yeon-Jae
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.50-57
    • /
    • 2016
  • Pipeline is one of the most abundant components in petrochemical plant. It plays a critical role in transporting fluids. Some pipelines are thermally insulated by wrapping them with insulating materials to prevent the loss of energy. However, when corrosion begins under insulation, it cannot be easily seen without unwrapping the cover, and thus corrossion should be detected using a non-destructive ways such as ultrasound guided wave. In this paper, the piping where the CUI (Corrosion Under Insulation) which occurs in the insulation parts guided waves effectively the optimum condition which is theoretical for selected guided waves phase velocity dispersion curve and wave-structure. The results of this study are expected to be directly utilized for onsite inspection of pipeline's CUI in many petrochemical plants.

A Study of the Guided Wave Propagation in the Water Supplying Pipes with Scale (스케일이 있는 급수관내의 유도초음파의 전파 특성에 관한 연구)

  • Song, Sung-Jin;Lee, Dong-Hoon;Lee, Hyun-Dong;Bae, Cheol-Ho;Park, Jung-Hoon;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • Since the scale in pipes reduces the flow rate, a quantitative evaluation of the scale is essential for the proper maintenance of pipes. Guided waves were employed to estimate the amount of scale in water supplying pipes. Using variable angle wedge, several modes of guided waves wire generated and their propagation charcteristics along the pipes with stale were analyzed. It was experimentally observed that the amplitude of F(M,2) modes at $f{\times}d=1.5MHz\;mm$ decreased significantly with increasing amount of scale. The present study showed that F(M,2) modes were optima) to evaluate the scale in water supplying pipes.

Identification of Guided-wave Modes for on-line monitering in the pipe weldment (배관 용접부의 상시감시를 위한 유도초음파 모드 규명)

  • Park Ik-Geun;Kim Tae-Hyeong;Lee Cheol-Gu;Kim Yong-Gwon;Park Tae-Seong;Lee Jin-Hyeok
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.307-309
    • /
    • 2006
  • For efficient NDE of pipes, essential components of power plant facilities, ultrasonic guided waves were generated and received applying an air-coupled transducer and comb one as non-contact technology, Mode generation and selection were predicted based on theoretical dispersive curve and the element spaceof a comb transducer. In addition, a receiving angle of the air-coupled transducer was determined to acquire the predicted modes by theoretical phase velocity of each mode. Theoretical dispersive curve was compared with the results of the time-frequency spectroscopes based on the wavelet transform and 2D-FFT to identify the characteristics of the received mode. The received modes show a good agreement with the predicted ones.

  • PDF