Browse > Article
http://dx.doi.org/10.5574/KSOE.2013.27.1.016

Attenuation Characterization of L(0,2) Guided Wave Mode through Numerical Analyses and Model Experiments with Buried Steel Pipe  

Lee, Juwon (Department of Ocean Engineering, Pukyong National University)
Na, Won-Bae (Department of Ocean Engineering, Pukyong National University)
Publication Information
Journal of Ocean Engineering and Technology / v.27, no.1, 2013 , pp. 16-23 More about this Journal
Abstract
By carrying out numerical analyses and model experiments, this paper presents the attenuation characterization of an L(0,2) guided ultrasonic wave propagating in a buried steel pipe. From this investigation, we first find that the L(0,2) mode has a better attenuation property. Second, it is shown from the numerical analyses that the attenuation increases with increases in the soil embedment length (0, 500, 1000, and 1500 mm) and degrees of saturation (0, 50, 99, and 100%). Third, it is also shown from the model experiment that the attenuation increases as the embedment lengths and soil moisture quantities (0, 10, 20, and 30 kg) increase. Finally, we find that an exponential extrapolation gives a better attenuation prediction because the extrapolation gives similar attenuation patterns between the numerical and experimental results.
Keywords
Buried pipe inspection; Guided waves; Attenuation; DISPERSE; L(0,2) Mode;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Cho, Y., 2001. Understanding and Applications of Ultrasonic Guided Waves. Journal of the Korean Society for Nondestructive Testing, 21(4), 446-460.
2 Essandoh-Yeddu, J., Gulen G., 2009. Economic Modeling of Carbon Dioxide Integrated Pipeline Network for Enhanced Oil Recovery and Geological Sequestration in the Texas Gulf Coast Region. Energy Procedia, 1, 1603-1610.   DOI   ScienceOn
3 Fratta, D., Alshibli, K.A., Tanner, W.M., Roussel, L., 2005. Combined TDR and P-wave Velocity Measurements for the Determination of In Situ Soil Density - Experimental Study. Geotechnical Testing Journal, 28(6), 1-11.
4 Kwun, H., Holt, A.E., 1995. Feasibility of Under-lagging Corrosion Detection in Steel Pipe using the Magnetostrictive Sensor Technique. NDT&E International, 28, 211-214.   DOI   ScienceOn
5 Kwun, H., Kim, S.Y., Choi, M.S., 2004. Torsional Guided -Wave Attenuation in Coal-Tar-Enamel-Coated, Buried Piping. NDT&E International, 37, 663-665.   DOI   ScienceOn
6 Lee, J., Na, W.B., Shin, S.W., Kim, J.M., 2010a, Effect of Surrounding Soil Properties on the Attenuation of the First Guided Longitudinal Wave Mode Propagating in Waterfilled, Buried Pipes. Journal of Ocean Engineering and Technology, 24(4), 32-37.
7 Lee, J., Shin, S.W., Na, W.B., 2010b. Attenuation of Longitudinal Fundamental Guided Wave Mode in Steel Pipe Embedded in Soil. Journal of the Korean Society for Nondestructive Testing, 30(6), 539-547.
8 Long, R., Lowe, M., Cawley, P., 2003. Attenuation Characteristics of the Fundamental Modes That Propagate in Buried Iron Water Pipes. Ultrasonics, 41, 509-519.   DOI   ScienceOn
9 Lowe, M.J.S., 1995. Matrix Technique for Modelling Ultrasonic Waves in Multilayered Media. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 42(4), 525-542.   DOI   ScienceOn
10 Na, W.B., Ryu, Y.S., J.T. Kim, 2005. Attenuation of Fundamental Longitudinal Cylindrical Guided Wave Propagating in Liquid-Filled Steel Pipes. Journal of Ocean Engineering and Technology, 19(5), 26-33.
11 Qian, X., Gray, D.H., Woods, R.D., 1993. Voids and Granulometry : Effects on Shear Modulus of Unsaturated Sands, ASCE Journal of Geotechnical Engineering, 119(2), 295-314.   DOI
12 Rose, J.L., 2004. Ultrasonic Waves in Solid Media. Cambridge University Press.
13 Rose, J.L., Li, Z., Avioli, M., Mudge, P.J., 2005. A Natural Focusing Low Frequency Guided Wave Experiment for the Detection of Defects Beyond Elbows. ASME Journal of Pressure Vessel Technology, 127, 310-316.   DOI   ScienceOn
14 Silk, M.G., Bainton, K.F., 1979. The Propagation in Metal Tubing of Ultrasonic Wave Modes Equivalent to Lamb Waves. Ultrasonics, 17, 11-19.   DOI   ScienceOn