• 제목/요약/키워드: growth velocity

검색결과 488건 처리시간 0.026초

Numerical study of the effect of periodic jet excitation on cylinder aerodynamic instability

  • Hiejima, S.;Nomura, T.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.141-150
    • /
    • 2002
  • Numerical simulations based on the ALE finite element method are carried out to examine the aerodynamics of an oscillating circular cylinder when the separated shear flows around the cylinder are stimulated by periodic jet excitation with a shear layer instability frequency. The excitation is applied to the flows from two points on the cylinder surface. The numerical results showed that the excitation with a shear layer instability frequency can reduce the negative damping and thereby stabilize the aerodynamics of the oscillating cylinder. The change of the lift phase seems important in stabilizing the cylinder aerodynamics. The change of lift phase is caused by the merger of the vortices induced by the periodic excitation with a shear layer instability frequency, and the vortex merging comes from the high growth rate, the rapid increase of wave number and decrease of phase velocity for the periodic excitation in the separated shear flows.

Spatial distrbibution of star formation in extremely strong $H{\alpha}$ emitters

  • Shim, Hyunjin;Chary, Ranga Ram
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.65.1-65.1
    • /
    • 2014
  • We present Palomar/SWIFT integral field spectroscopy of z~0.2 strong $H{\alpha}$ emitters identified in the Sloan Digital Sky Survey. The large Halpha equivalent widths as well as the huge specific star formation rates of these galaxies are comparable with that of z>4 Lyman break galaxies, thus understanding the gas kinematics and the distribution of massive stars in these systems will help to obtain a better understanding of high-redshift star forming environments and the growth of massive galaxies. We measure the velocity dispersion across the entire galaxy, estimate the number density and the spatial distribution of massive stars from the emission line morphologies. The role of minor mergers in powering star formation is investigated as an alternative to cold flow driven star formation.

  • PDF

Marangoni 대류계에서의 안정성 교환의 원리 (Principle of Exchange of Stabilities in the Marangoni Convection System)

  • 김민찬
    • Korean Chemical Engineering Research
    • /
    • 제47권2호
    • /
    • pp.262-265
    • /
    • 2009
  • 초기에 안정하게 유지되고 있는 수평 유체층에서 급격한 온도 변화에 의한 Marangoni 대류 발생계에서 안정성 교환의 원리를 해석적으로 증명하였다. 선형 안정성 이론하에서 온도 및 속도의 교란량을 직교함수들의 선형 조합으로 나타내고, 온도 교란의 성장률이 모든 Marangoni 수 범위에 대하여 실수임을 보였다.

체적팽창효과를 고려한 예혼합화염과 와동의 상호작용에 관한 연구 (The Interaction of Vortex and Premixed Flame with Consideration of Volume Expansion Effect)

  • 정의헌;권세진
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 추계 학술대회논문집
    • /
    • pp.204-210
    • /
    • 1998
  • A method is developed to include the effect of volume expansion in the description of the flame dynamics using G-equation. Line volume-source is used to represent the effect of the exothermic process of combustion with source strength determined by the density difference between the burned and the unburned region. Volume expansion adjusts the flow field to accommodate the increased volume flow rate crossing the flame front. Test result predicted the measured velocity field qualitatively. The method was applied to study the interaction of vortex and premixed flame. Increased volume expansion did not change the initial growth rate of flame area. However, the residence time and flame surface area increased with higher expansion ratios.

  • PDF

결함발생 시점을 고려한 CANDU 압력관 결함의 확률론적 건전성평가 (Probabilistic Integrity Assessment of CANDU Pressure Tube for the Consideration of Flaw Generation Time)

  • 곽상록;이준성;김영진;박윤원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.155-160
    • /
    • 2001
  • This paper describes a probabilistic fracture mechanics (PFM) analysis based on Monte Carlo (MC) simulation. In the analysis of CANDU pressure tube, it is necessary to perform the PFM analyses based on statistical consideration of flaw generation time. A depth and an aspect ratio of initial semi-elliptical surface crack, a fracture toughness value, delayed hydride cracking (DHC) velocity, and flaw generation time are assumed to be probabilistic variables. In all the analyses, degradation of fracture toughness due to neutron irradiation is considered. Also, the failure criteria considered are plastic collapse, unstable fracture and crack penetration. For the crack growth by DHC, the failure probability was evaluated in due consideration of flaw generation time.

  • PDF

Numerical Modeling for Combustion and Soot Formation Processes in Turbulent Diffusion Flames

  • Kim, Hoo-Joong;Kim, Yong-Mo
    • Journal of Mechanical Science and Technology
    • /
    • 제16권1호
    • /
    • pp.116-124
    • /
    • 2002
  • In order to investigate the soot formation and oxidation processes, we employed the two variable approach and its source terms representing soot nucleation, coagulation, surface growth and oxidation. For the simulation of the taxi-symmetric turbulent reacting flows, the pressure-velocity coupling is handled by the pressure based finite volume method. We also employed laminar flamelet model to calculate the thermo-chemical properties and the proper soot source terms from the information of detailed chemical kinetic model. The numerical and physical models used in this study successfully predict the essential features of the combustion processes and soot formation characteristics in the reacting flow field.

와점성 변화가 회전곡면으로 이루어진 마이크로 슬롯 유동장에 미치는 영향 (Effects of Vortex Viscosity Variation on the Flowfields in a Micro-slot between Rotating Surfaces of Revolution)

  • 최근우;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.591-596
    • /
    • 2001
  • Micron-size mechanical devices are becoming more prevalent, both in commercial applications and in scientific inquiry. Within the last decade, a dramatic increase in research activities has taken place, mostly due to the rapidly expanding growth of applications in areas of MEMS(Micro-Electro-Mechanical Systems), bioengineering, chemical systems, and advanced energy systems. In this study, we have described the effects of vortex viscosity variation on the flowfields in a micro-slot between rotating surfaces of revolution using a micropolar fluid theory. In order to solve this problem, we have used boundary layer equations and applied non-zero values of the microrotation vector on the wall. The results are compared with the corresponding flow problems for Newtonian fluid. Results show that the coefficient $\delta$ controls the main part of velocity ${\upsilon}_x$ and the coefficient M controls the main part of microrotation component ${\Omega}_{\theta}$.

  • PDF

$\beta$-$Al_2O_3$ 고체전해질의 퇴화모델 (A Model for Degradation of $\beta$-$Al_2O_3$ Solid Electrolyte)

  • 송효일;김응수;윤기현
    • 한국세라믹학회지
    • /
    • 제22권5호
    • /
    • pp.23-28
    • /
    • 1985
  • A model for degradation of $eta$-$Al_2O_3$ is derived from sress generated by Poiseuille pressure capillary effect and effulent flux in charging process of Na-S Battery. Critical current density for degradation increase with increasing the crack length and crack tip radius. radius 10-7cm and crack length 10-5cm Dependence of crack growth velocity on crack lengh is seperated two regions that is for a large crack length it is predominated by Poiseuille pressure and effulent fluex but in the case of small crack length it is controlled by capillary effect.

  • PDF

체적팽창효과를 고려한 예혼합화염과 와동의 상호작용에 관한 연구 (The Interaction of Vortex and Premixed Flame with Consideration of Volume Expansion Effect)

  • 정의헌;권세진
    • 대한기계학회논문집B
    • /
    • 제22권12호
    • /
    • pp.1669-1680
    • /
    • 1998
  • A method is developed to include the effect of volume expansion in the description of the flame dynamics using G-equation. Line volume-source is used to represent the effect of the exothermic process of combustion with source strength assigned by the density difference between the burned and the unburned region. The present model provides good agreement with the experimental results. Including volume expansion, the flow field is adjusted to accommodate the increased volume flow rate which crossing the flame front and the result predicts the same behavior of measured velocity field qualitatively. The effect of increasing volume expansion does not change the initial growth rate of flame area but increase the residence time. Consequently this effect increases the maximum area of flame front. The flame propagation in varying flow field due to volume expansion provides a promising way to represent the wrinkled turbulent premixed flames in a numerically efficient manner.

난삭재 고속가공에서의 엔드밀링 공정의 절삭력 해석 (Cutting Force Analysis in End Milling Process for High-Speed Machining of Difficult-to-Cut Materials)

  • 전태수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.359-364
    • /
    • 1999
  • Due to rapid growth of die and mould industries, it is urgently required to maximize the productivity and the efficiency of machining. In recent years, owing to the development of new kinds of material, die and mould materials are much harder and it is more difficult to cut. In this study, the workpiece SKD11(HRC45) is cut with TiAlN coated tungsten-carbide cutting tools. To find the general characteristics of difficult-to-cut materials, orthogonal turning test is performed. Orthogonal cutting theory can be expanded to oblique cutting model. The oblique cutting process in the small cutting edge element has been analyzed as orthogonal cutting process in the plane containing the cutting velocity vector and chip-flow vector. Hence, with the orthogonal cutting data obtained from orthogonal turning test, the cutting forces can be analyzed through oblique cutting model. The simulation results have shown a fairy good agreement with the test results.

  • PDF