• Title/Summary/Keyword: growth temperature

Search Result 8,766, Processing Time 0.043 seconds

Effects of Photoperiod and Temperature on Flowering Responses of Ornamental Nicotiana species (일장 및 온도처리가 관상용 Nicotiana species의 개화에 미치는 영향)

  • Koo, Han-Seo;Kim, Chung-Whan;Lee, Young-Deuk
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.11 no.2
    • /
    • pp.127-134
    • /
    • 1989
  • Several growth characteristics of two ornamental tobacco species, Nicotiana sanderae and N. affinis, were investigated in this study. Also effect of temperature and daylength on the flowering of the tobacco plants were evaluated to obtain basic information on breeding and cultivation. 1. The plants were great in high temperature-long day at the early stage and in low temperature-short day at the late stage of plant growth, for both Nicotana species. At the early growth stage the leaf length N. sanderae was great in high temperature-long day, and that of N. affinis was great in high temperature-short day period, while at the late stage of the plant growth the leaf lengths were more significantly effected by the temperature rather than daylength. Leaf width and leaf shape index were less sensitive to the conditions. 2. For both of the species, the total number of tobacco leaves not much influenced by the temperature and daylength. 3. There were no significant differences for budding and flowering period between the two species, both of which were sensitive to temperature and daylength with more influence by daylength than temperature. 4. Number of floral stalks, number of flower and flowering period were not much influenced by temperature and daylength; however, N. affinis had 2 more floral stalks, 31 more flowers, and 6 day longer flowering period than N. sanderae.

  • PDF

Nucleation and Growth of Diamond in High Pressure

  • Choi, Jun-Youp;Park, Jong-Ku;Kang, Suk-Joong L.;Kwang, Yong-Eun
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.221-225
    • /
    • 1996
  • In diamond synthesis by metal film growth method under high pressure and high temperature, the nucleation and growth of diamond was observed dependent on the carbon source variation from graphite powder to the heat treated powders of lamp black carbon. At the low driving force condition near equilibrium pressure and temperature line, nucleation of diamond did not occur but growth of seed diamond appeared in the synthesis from lamp black carbon while both nucleation and growth of diamond took place in the synthesis from graphite. Growth morphology change of diamond occurred from cubo-octahedron to octahedron in the synthesis from graphite but very irregular growth of seed diamond occurred in the synthesis from lamp block carbon. Lamp black carbon transformed to recrystallized graphite first and very nucleation of diamond was observed on the recrystallized graphite surface. Growth morphology of diamond on the recrystallized graphite was clear cubo-octahedron even at higher pressure departure condition from equilibrium pressure and temperature line.

  • PDF

The Effect of Temperature on Early growth of Ciona intestinalis (Ascidiacea, Phlebobranchia, Cionidae) (유령멍게 (Ciona intestinalis: Ascidiacea, Phlebobranchia, Cionidae)의 초기 성장에 미치는 온도의 영향)

  • Kim, Dong Gun;Park, Ju Un;Kim, Dong Hyun;Yoon, Tae Joong;Shin, Sook
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • A native species to the European ocean, the tunicate Ciona intestinalis now appears worldwide, from sub-Arctic to tropical regions. C. intestinalis generally occurs as an opportunistic fouling organism on artificial substrates in harbors or aquaculture. This study focused on estimating the early growth pattern of C. intestinalis under various temperature conditions. Adults were collected from the Guryungpo harbour in November 2016, and their artificially inseminated eggs were used for the study. The growth of the C. intestinalis was investigated at 8 constant temperatures, ranging from $12^{\circ}C$ to $26^{\circ}C$, at 30 psu. Results indicate that the growth of C. intestinalis increased with increasing temperature. The growth was sluggish at $12^{\circ}C$, and decreased at $26^{\circ}C$. The optimal temperature for growth of C. intestinalis was therefore estimated to be between $20^{\circ}C$ and $24^{\circ}C$.

Growth and Environmental Tolerances (Water Temperature and Low Salinity) of Hybrid Female Red Sea Bream Pagrus major × Male Black Sea Bream Acanthopagrus schregeli (교잡어, 참돔 (Pagrus major, ♀) × 감성동 (Acanthopagrus schregeli, ♂)의 성장 및 수온변화와 저염분 환경에서의 내성)

  • Kim, Yang-Su;Ji, Seung-Cheol;Biswas, Biswajit Kumar;Biswas, Amal;Jeong, Gwan-Sik;Murata, Osamu;Takii, Kenji
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.3
    • /
    • pp.276-283
    • /
    • 2011
  • The growth and tolerance for water temperature and salinity were compared among red sea bream Pagrus major (RSB) black sea bream Acanthopagrus schregeli (BSB) and their hybrid ($F_1$), female RSB ${\times}$ male BSB. The growth of the $F_1$ fish did not differ until 27 days after hatching (dAH), after which the most rapid growth was observed until approximately 300 dAH, followed by RSB and BSB. However, the RSB had out grown the $F_1$ fish by approximately 303 dAH. By 480 dAH, the RSB were largest, followed by the $F_1$ and BSB groups. The tolerances for high and low water temperature were significantly different for each species and growth stage. The largest tolerance spectrum was observed in the BSB group, and the tolerance spectrums gradually decreased with increasing final body weight. During the salinity tolerance trials, all of the species started to die following transfer into freshwater (0 psu). BSB showed the highest survival rate when kept in fresh water for an average of 29.9 hours, while the $F_1$ fish were more tolerant than the RSB fish. The fish were increasingly tolerant to fresh water and changes in water temperature as they grew, while the size of the temperature spectrum remained unchanged but shifted to a lower temperature range with growth. Our results demonstrate that $F_1$ performed well in terms of growth compared to parental fish, with higher temperature and salinity tolerances than RSB, and is thus suggested to be a suitable aquaculture species for Korea and northeast China.

A Study of Fatigue Crack Threshold Characteristics in Pressure Vessel Steel at Low Temperature (압력용기용 강의 저온 피로 크랙 하한계 특성에 관한 연구(I))

  • Park, K.D.;Ro, T.Y.;Kim, Y.T.;Kim, H.J.;Oh, M.S.;Lee, K.L.;Kim, J.H.
    • Journal of Power System Engineering
    • /
    • v.4 no.1
    • /
    • pp.81-87
    • /
    • 2000
  • In this study, CT specimens were prepared from ASTM SA516 Gr. 70 which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at $25^{\circ}C,\;-60^{\circ}C,\;-80^{\circ}C\;and\;-100^{\circ}C$ and in the range of stress ratio of 0.05 by means of opening mode displacement. At the constant stress ratio, the threshold stress intensity factor range ${\Delta}K_{th}$ in the early stage of fatigue crack growth (Region I) and stress intensity factor range ${\Delta}K$ in the stable of fatigue crack growth (Region II) was increased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm $d{\alpha}/dN\;-{\Delta}K$ in Region II, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It assumed that the fatigue crack growth rate $d{\alpha}/dN$ is rapid in proportion to descend temperature in Region II and the cryogenic-brittleness greatly affect a material with decreasing temperature.

  • PDF

Temperature-dependent Differences in Heading Response at Different Growth Stages of Rice

  • Lee, HyeonSeok;Choi, MyoungGoo;Lee, YunHo;Hwang, WoonHa;Jeong, JaeHyeok;Yang, SeoYeong;Lim, YeonHwa;Lee, ChungGen;Choi, KyungJin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.3
    • /
    • pp.213-224
    • /
    • 2019
  • There is an increasing frequency in the occurrence of abnormal weather phenomena such as sharp increases and decreases in temperature. Under these weather conditions, the heading time of rice changes unexpectedly, which poses problems in agriculture. Therefore, we investigated the effect of temperature on the heading response at different growth stages in rice. During the period from transplanting to heading, the plants were subjected to different temperature treatments, each for a 9-day period, to observe the heading response. For the heading date analysis, "heading date" was defined as the number of days from transplanting to the appearance of the first spikelet. We found that the influence of temperature increased in the order of rooting stage, followed by meiosis, early tillering, spikelet differentiation, and panicle initiation stage in all ecological types and cultivars. In particular, unlike the results reported previously, the effect of temperature on heading during the photo-sensitive period was very small. Meanwhile, the influence of temperature on vegetative growth response at different growth stages was not consistent with heading response. These results can be used as basic data for predicting the variation in heading date owing to temperature variation at each growth stage. In addition, we propose that the concept of day length should be included in determining the influence of temperature on the photo-sensitive period.

Ecophysiology of the kleptoplastidic dinoflagellate Shimiella gracilenta: II. Effects of temperature and global warming

  • Ok, Jin Hee;Jeong, Hae Jin;Kang, Hee Chang;Park, Sang Ah;Eom, Se Hee;You, Ji Hyun;Lee, Sung Yeon
    • ALGAE
    • /
    • v.37 no.1
    • /
    • pp.49-62
    • /
    • 2022
  • Water temperature affects plankton survival and growth. The dinoflagellate Shimiella gracilenta survives using the plastids of ingested prey, indicating kleptoplastidy. However, studies on the effects of water temperature on kleptoplastidic dinoflagellates are lacking. We explored the growth and ingestion rates of S. gracilenta as a function of water temperature. Furthermore, using data on its spatiotemporal distribution in Korean coastal waters during 2015-2018, we predicted its distribution under elevated temperature conditions of +2, +4, and +6℃. Growth rates of S. gracilenta with and without Teleaulax amphioxeia prey as well as ingestion rates were significantly affected by water temperature. Growth rates of S. gracilenta with and without prey were positive or zero at 5-25℃ but were negative at ≥30℃. The maximum growth rate of S. gracilenta with T. amphioxeia was 0.85 d-1, achieved at 25℃, and 0.21 d-1 at 20℃ without prey. The ingestion rate of S. gracilenta on T. amphioxeia at 25℃ (0.05 ng C predator-1 d-1) was greater than that at 20℃ (0.04 ng C predator-1 d-1). Thus, feeding may shift the optimal temperature for the maximum growth rate of S. gracilenta from 20 to 25℃. In spring and winter, the distributions of S. gracilenta under elevated temperature conditions were predicted not to differ from those during 2015-2018. However, S. gracilenta was predicted not to survive at some additional stations under elevated temperature conditions of +2, +4, and +6℃ in summer or under elevated temperature conditions of +6℃ in autumn. Therefore, global warming may affect the distribution of S. gracilenta.

Analysis of Temperature Effects on Microbial Growth Parameters and Estimation of Food Shelf Life with Confidence Band

  • Park, Jin-Pyo;Lee, Dong-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.2
    • /
    • pp.104-111
    • /
    • 2008
  • As a way to account for the variability of the primary model parameters in the secondary modeling of microbial growth, three different regression approaches were compared in determining the confidence interval of the temperature-dependent primary model parameters and the estimated microbial growth during storage: bootstrapped regression with all the individual primary model parameter values; bootstrapped regression with average values at each temperature; and simple regression with regression lines of 2.5% and 97.5% percentile values. Temperature dependences of converted parameters (log $q_o$, ${\mu}_{max}^{1/2}$, log $N_{max}$) of hypothetical initial physiological state, maximum specific growth rate, and maximum cell density in Baranyi's model were subjected to the regression by quadratic, linear, and linear function, respectively. With an advantage of extracting the primary model parameters instantaneously at any temperature by using mathematical functions, regression lines of 2.5% and 97.5% percentile values were capable of accounting for variation in experimental data of microbial growth under constant and fluctuating temperature conditions.

Effect of Seedling Size and Low Temperature on Growth and Bolting in Angelica gigas Nakai (참당귀묘의 크기 및 저온처리가 생육과 추대에 미치는 영향)

  • 유홍섭;강병화;김영국;이승택
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.2
    • /
    • pp.196-201
    • /
    • 1997
  • This study was carried out to understand the effect of low temperature treatment and seedling size on growth and bolting in Angeljca gjgas. Bolting rate increased as period of low temperature increased and bolting rate of control was lower than that of low temperature treatment. In low temperature treatment with seedling size, the smaller seedling size, the higher bolting rate. Period from transplanting to bolting was reduced with low temperature treatment extended and large seedling. The plant height, position of bolting leaf and number of developing leaf were decreased with low temperature treatment extended and large seedling, respectively, There was a highly significant negative correlation between bolting rate and number of developed leaves before bolting and number of developed leaves in growth to first bolting but positive correlation in late growth, respectively.

  • PDF

Effect of Salinity on the Seed Germination and Seedling Growth of Pinus densiflora for. erecta Uyeki (염도가 금강소나무의 종자발아와 유묘성장에 미치는 영향)

  • Lee, Ho-Joon;Kim, Seon-Ho
    • The Korean Journal of Ecology
    • /
    • v.12 no.4
    • /
    • pp.219-236
    • /
    • 1989
  • The effect of salinity on the seed germination and seedling growth of Pinus densiflora for. erecta Uyeki were studied under the controlled conditions in the growth chamber. The seeds were sorted into three classes in weight such as large ($15.49\pm$1.63mg), medium($10.61\pm$1.38mg), and small ($6.57\pm$1.33mg) to determine the role of seed weight in germination and seedling growth of the pine. Polymorphic seeds of the pine were germinated an salinity range of 0 to 1.5% NaCl under various temperature ($10^{\circ}$ $-25^{\circ}$ with $5^{\circ}$C interval of constant temperature, and $10^{\circ}$ $-20^{\circ}$C, $15^{\circ}$ $-25^{\circ}$C of alternating temperature) in order to determine their germinability and seeding growth. In control plot, there was little difference of germination percentage among the seed weight classes, but in saline plot, the larger seeds generally had a higher percentage and rate of germination. There occurred synergistic interaction between salinity and temperature in the germination and the increase of temperature enhanced germination of seeds at the same salinity level. Alternating temperature regimes of $15^{\circ}$-$25^{\circ}$C yielded maximum germination and no germination was occurred at $10^{\circ}C$. The germination at alternating temperature showed higher germination percentage than at constant temperature. The percentage and of germination decreased drastically with increased salinity level to 1.00%; no germination was occurred at 1.50% salinity level. The growth fo sddelings from larger seeds was better than that of smaller seeds at the same salinity and temperature. The hypocotyl and radicle were more sensitive than cotyledon to the increased salinity stress.

  • PDF