• 제목/요약/키워드: growth simulation

검색결과 1,085건 처리시간 0.026초

온라인 주문 풀필먼트를 위한 물류센터 피킹 설비 최적화에 대한 연구 (A Study on Optimization of Picking Facilities for e-Commerce Order Fulfillment)

  • 김태현;송상화
    • 한국전자거래학회지
    • /
    • 제26권1호
    • /
    • pp.67-78
    • /
    • 2021
  • 국내 전자상거래는 거래액을 기준으로 최근 5년간 연평균 20% 이상의 성장률을 지속적으로 기록하고 있다. 전자상거래의 급증으로 인해 소비자를 직접 만나기 어려운 유통기업들은 고객과의 유일한 접점이 되는 라스트마일 서비스 경쟁이 치열한데, 특히 최근 가장 경쟁이 뜨거운 배송영역은 서비스 차별화를 위해 풀필먼트 센터의 역할이 매우 중요하다. 소비자가 주문한 제품을 서비스 수준에 맞춰 신속하게 준비 할 수 있는 역량을 반드시 갖추고 있어야 한다. 본 연구는 전자상거래 시장에서 기업이 경쟁력을 갖추기 위한 방안으로써 풀필먼트 센터에서의 신속한 주문처리를 위해 오더피킹 시스템을 대상으로 연구를 진행하였다. 오더피킹 설비에서의 재고 보충 최적화를 위한 수리 모형 알고리즘을 구현하고, 실제 운영 프로세스와 데이터를 활용한 시뮬레이션을 통해 과학적이고 객관적인 방법으로 효과를 검증하였다.

차원축소모델을 활용한 시간에 따른 착빙 형상 예측 연구 (Temporal Prediction of Ice Accretion Using Reduced-order Modeling)

  • 강유업;이관중
    • 한국항공우주학회지
    • /
    • 제50권3호
    • /
    • pp.147-155
    • /
    • 2022
  • 항공기 및 철도차량 운용 중 발생하는 착빙 및 착설 현상은 공력 성능 감소와 주요 부품의 파손을 야기하기 때문에 시간에 따른 얼음 증식을 예측하는 것이 운용 안전 측면에서 매우 중요하다. 결빙수치해석은 실험적 방법에 비해 경제적으로 저렴하고 상사성 문제로부터 자유롭다는 점에서 결빙 형상을 예측하기 위한 수단으로 널리 사용되고 있다. 그러나 결빙수치해석은 착빙노출시간을 multi-step으로 나누어 매 단계별로 정상상태를 가정하는 준정상상태(quasi-steady) 가정을 이용한다. 이러한 방법은 효율적인 해석이 가능하지만 연속적인 결빙 형상을 얻지 못한다는 단점을 가지고 있다. 본 연구에서는 차원축소기법을 활용하여 결빙 형상 데이터를 보간함으로써 시간에 따른 결빙 형상을 연속적으로 예측할 수 있는 모델을 만드는 것을 목적으로 한다. 서로 다른 100개의 결빙 조건에서 형성된 결빙 데이터에 대하여 차원축소모델을 적용하였으며, 학습 데이터의 수와 결빙 조건이 차원축소모델의 예측 오차에 미치는 영향을 분석하였다.

A novel method for generation and prediction of crack propagation in gravity dams

  • Zhang, Kefan;Lu, Fangyun;Peng, Yong;Li, Xiangyu
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.665-675
    • /
    • 2022
  • The safety problems of giant hydraulic structures such as dams caused by terrorist attacks, earthquakes, and wars often have an important impact on a country's economy and people's livelihood. For the national defense department, timely and effective assessment of damage to or impending damage to dams and other structures is an important issue related to the safety of people's lives and property. In the field of damage assessment and vulnerability analysis, it is usually necessary to give the damage assessment results within a few minutes to determine the physical damage (crack length, crater size, etc.) and functional damage (decreased power generation capacity, dam stability descent, etc.), so that other defense and security departments can take corresponding measures to control potential other hazards. Although traditional numerical calculation methods can accurately calculate the crack length and crater size under certain combat conditions, it usually takes a long time and is not suitable for rapid damage assessment. In order to solve similar problems, this article combines simulation calculation methods with machine learning technology interdisciplinary. First, the common concrete gravity dam shape was selected as the simulation calculation object, and XFEM (Extended Finite Element Method) was used to simulate and calculate 19 cracks with different initial positions. Then, an LSTM (Long-Short Term Memory) machine learning model was established. 15 crack paths were selected as the training set and others were set for test. At last, the LSTM model was trained by the training set, and the prediction results on the crack path were compared with the test set. The results show that this method can be used to predict the crack propagation path rapidly and accurately. In general, this article explores the application of machine learning related technologies in the field of mechanics. It has broad application prospects in the fields of damage assessment and vulnerability analysis.

군사시설 내 지열 히트펌프 시스템 적용에 따른 에너지 성능과 비용 절감 효과 평가 (Energy Performance and Cost Assessment for Implementing GroundSource Heat Pump System in Military Building)

  • 손병후;조경주;조동우
    • 한국지열·수열에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.45-57
    • /
    • 2022
  • The Ministry of National Defense of the Republic of Korea is showing a lot of interest in net zero-energy buildings (NZEBs) to reduce energy consumption of military facilities and to promote green growth policy in military sector. The application of building passive technologies and renewable energies is essential to achieving NZEBs. This paper analyzed energy performance and energy cost on the conventional heating and cooling system (baseline scenario) and three different alternative scenarios (ALT 1, ALT 2 and ALT 3) applied in a hypothetical military building. A building modeling and simulation software (DesignBuilder V6.1) with EnergyPlus calculation engine was used to calculate the energy consumption for each scenario. Overall, when the GSHPs are applied to both space airconditioning and domestic hot water (DHW) production, Alt-2 and Alt-3, the amount of energy consumption for target building can be greatly reduced. In addition, when the building envelope performance is increased like Alt-3, the energy consumption can be further reduced. The annual energy cost analysis showed that the baseline was approximately 161 million KRW, while Alt-3 was approximately 33 million KRW. Therefore, it was analyzed that the initial construction cost increase could be recovered within about 6.7 years for ALT 3. The results of this study can help decision-makers to determine the optimal strategy for implementing GSHP systems in military buildings through energy performance and initial construction cost assessment.

Horizon Run Spin-off Simulations for Studying the Formation and Expansion history of Early Universe

  • Kim, Yonghwi;Park, Jaehong;Park, Changbom;Kim, Juhan;Singh, Ankit;Lee, Jaehyun;Shin, Jihye
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.45.1-45.1
    • /
    • 2021
  • Horizon Run 5 (HR5) is a cosmological hydrodynamical simulation which captures the properties of the Universe on aGpc scale while achieving a resolution of 1kpc. This enormous dynamic range allows us to simultaneously capture the physics of the cosmic web on very large scales and account for the formation and evolution of dwarf galaxies on much smaller scales. On the back of a remarkable achievement of this, we have finished to run follow-up simulations which have 2 times larger volume than before and are expected to complementary to some limitations of previous HR simulations both for the study on the large scale features and the expansion history in a distant Universe. For these simulations, we consider the sub-grid physics of radiative heating/cooling, reionization, star formation, SN/AGN feedbacks, chemical evolution and the growth of super-massive blackholes. In order to do this project, we implemented a hybrid MPI-OpenMP version of the RAMSES code, 'RAMSES-OMP', which is specifically designed for modern many-core many thread parallel systems. These simulation successfully reproduce various observation result and provide a large amount of statistical samples of Lyman-alpha emitters and protoclusters which are important to understand the formation and expansion history of early universe. These are invaluable assets for the interpretation of current ΛCDM cosmology and current/upcoming deep surveys of the Universe, such as the world largest narrow band imaging survey, ODIN (One-hundred-square-degree Dark energy camera Imaging in Narrow band).

  • PDF

Simulation and Analysis of Wildfire for Disaster Planning and Management

  • Yang, Fan;Zhang, Jiansong
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.443-449
    • /
    • 2022
  • With climate change and the global population growth, the frequency and scope of wildfires are constantly increasing, which threatened people's lives and property. For example, according to California Department of Forestry and Fire Protection, in 2020, a total of 9,917 incidents related to wildfires were reported in California, with an estimated burned area of 4,257,863 acres, resulting in 33 fatalities and 10,488 structures damaged or destroyed. At the same time, the ongoing development of technology provides new tools to simulate and analyze the spread of wildfires. How to use new technology to reduce the losses caused by wildfire is an important research topic. A potentially feasible strategy is to simulate and analyze the spread of wildfires through computing technology to explore the impact of different factors (such as weather, terrain, etc.) on the spread of wildfires, figure out how to take preemptive/responsive measures to minimize potential losses caused by wildfires, and as a result achieve better management support of wildfires. In preparation for pursuing these goals, the authors used a powerful computing framework, Spark, developed by the Commonwealth Scientific and Industrial Research Organization (CSIRO), to study the effects of different weather factors (wind speed, wind direction, air temperature, and relative humidity) on the spread of wildfires. The test results showed that wind is a key factor in determining the spread of wildfires. A stable weather condition (stable wind and air conditions) is beneficial to limit the spread of wildfires. Joint consideration of weather factors and environmental obstacles can help limit the threat of wildfires.

  • PDF

연안활동장소 위험도 평가를 위한 동적요소 예측 모듈 구축 (Establishment of a Dynamic Factor Prediction Module for Risk Assessment in Coastal Activity Sites)

  • 유영재;전동수;박원경
    • 한국해안·해양공학회논문집
    • /
    • 제35권5호
    • /
    • pp.95-101
    • /
    • 2023
  • 최근 지속적인 연안개발로 여가활동 장소 확대 및 접근성 증가를 가져왔으나, 그에 따른 안전사고도 증가 하였다. 이러한 사고 요인은 인위적인 유형과 자연적인 유형으로 분류되며, 후자는 파도, 조석, 해무 및 바람 등 동적 요소로 구성된다. 기상청, 국립해양조사원 등 기관들은 이미 동적 요소 정보를 제공하고 있지만, 그 해상도가 낮아 국지적 위험도를 정밀하게 평가하기 어려운 한계를 가지고 있다. 본 연구에서는 이러한 한계를 극복하기 위해 기존 오픈시스템의 동적 정보를 활용하여 높은 해상도의 수치 시뮬레이션을 구축하였고, 이를 통해 국지적인 연안활동 장소의 동적요소를 예측하는 자동화 모듈을 개발하였으며, 특히 모듈 구축 중 핵심인 수치예측 파랑 결과값과 파고 관측값을 비교검토 하였다.

4H-SiC PiN 다이오드의 깊은 준위 결함에 따른 전기적 특성 분석 (Analysis of Electrical Characteristics due to Deep Level Defects in 4H-SiC PiN Diodes)

  • 이태희;박세림;김예진;박승현;김일룡;김민규;임병철;구상모
    • 한국재료학회지
    • /
    • 제34권2호
    • /
    • pp.111-115
    • /
    • 2024
  • Silicon carbide (SiC) has emerged as a promising material for next-generation power semiconductor materials, due to its high thermal conductivity and high critical electric field (~3 MV/cm) with a wide bandgap of 3.3 eV. This permits SiC devices to operate at lower on-resistance and higher breakdown voltage. However, to improve device performance, advanced research is still needed to reduce point defects in the SiC epitaxial layer. This work investigated the electrical characteristics and defect properties using DLTS analysis. Four deep level defects generated by the implantation process and during epitaxial layer growth were detected. Trap parameters such as energy level, capture-cross section, trap density were obtained from an Arrhenius plot. To investigate the impact of defects on the device, a 2D TCAD simulation was conducted using the same device structure, and the extracted defect parameters were added to confirm electrical characteristics. The degradation of device performance such as an increase in on-resistance by adding trap parameters was confirmed.

PNU CGCM-WRF Chain을 이용한 우리나라 콩의 고온해 및 저온해에 대한 예측성 검증 (Evaluating the Predictability of Heat and Cold Damages of Soybean in South Korea using PNU CGCM -WRF Chain)

  • 최명주;안중배;김영현;정민경;심교문;허지나;조세라
    • 한국농림기상학회지
    • /
    • 제24권4호
    • /
    • pp.218-233
    • /
    • 2022
  • 본 연구에서는 Pusan National University Coupled General Circulation Model-Weather Research and Forecasting (PNU CGCM-WRF)에서 생산된 hindcast 자료(1986~2020)를 이용하여 우리나라의 주요 곡물 중 하나인 콩의 생육단계별 고온해 및 저온해 발생일수의 예측성을 평가하였다. 예측성을 평가하는 방법으로는 Normalized Standard Deviations (NSD), Root Mean Square Error (RMSE), Hit Rate (HR), Heidke Skill Score (HSS)이다. 이를 위해 먼저 콩의 고온해 및 저온해를 정의하는 변수인 일 최고기온(Tmax) 및 일 최저기온(Tmin)의 모의성능을 검증하였다. 그 결과 1~5월(01RUN~05RUN)의 초기조건을 가지고 시작하는 월에 따라 다소 차이가 있지만, Variance Scaling 방법을 적용하여 보정한 결과가 보정전보다 관측과 유사하게 나타났으며, 보정한 3~10월의 Tmax 및 Tmin에 대한 모의성능은 전반적으로 01RUN~05RUN에 Simple Composite Method (SCM)을 적용하여 평균한 결과(ENS)에서 높게 나타났다. 또한, 콩의 생육시기별 고온해 및 저온해 발생일수의 지역적 패턴과 특성을 관측과 비교하였을 때 모형이 잘 모의하고 있다. ENS에서 콩의 고온해(저온해)에 대한 HR과 HSS는 생육시기 별로 0.45~0.75, 0.02~0.10(0.49~0.76, -0.04~0.11)의 범위를 가진다. 결론적으로, PNU CGCM-WRF chain의 01RUN~05RUN 및 ENS는 우리나라 콩의 생육시기별 고온해 및 저온해를 예측할 수 있는 성능을 가지고 있다.

Perspective of breaking stagnation of soybean yield under monsoon climate

  • Shiraiwa, Tatsuhiko
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.8-9
    • /
    • 2017
  • Soybean yield has been low and unstable in Japan and other areas in East Asia, despite long history of cultivation. This is contrasting with consistent increase of yield in North and South America. This presentation tries to describe perspective of breaking stagnation of soybean yield in East Asia, considering the factors of the different yields between regions. Large amount of rainfall with occasional dry-spell in the summer is a nature of monsoon climate and as frequently stated excess water is the factor of low and unstable soybean yield. For example, there exists a great deal of field-to-field variation in yield of 'Tanbaguro' soybean, which is reputed for high market value and thus cultivated intensively and this results in low average yield. According to our field survey, a major portion of yield variation occurs in early growth period. Soybean production on drained paddy fields is also vulnerable to drought stress after flowering. An analysis at the above study site demonstrated a substantial field-to-field variation of canopy transpiration activity in the mid-summer, but the variation of pod-set was not as large as that of early growth. As frequently mentioned by the contest winners of good practice farming, avoidance of excess water problem in the early growth period is of greatest importance. A series of technological development took place in Japan in crop management for stable crop establishment and growth, that includes seed-bed preparation with ridge and/or chisel ploughing, adjustment of seed moisture content, seed treatment with mancozeb+metalaxyl and the water table control system, FOEAS. A unique success is seen in the tidal swamp area in South Sumatra with the Saturated Soil Culture (SSC), which is for managing acidity problem of pyrite soils. In 2016, an average yield of $2.4tha^{-1}$ was recorded for a 450 ha area with SSC (Ghulamahdi 2017, personal communication). This is a sort of raised bed culture and thus the moisture condition is kept markedly stable during growth period. For genetic control, too, many attempts are on-going for better emergence and plant growth after emergence under excess water. There seems to exist two aspects of excess water resistance, one related to phytophthora resistance and the other with better growth under excess water. The improvement for the latter is particularly challenging and genomic approach is expected to be effectively utilized. The crop model simulation would estimate/evaluate the impact of environmental and genetic factors. But comprehensive crop models for soybean are mainly for cultivations on upland fields and crop response to excess water is not fully accounted for. A soybean model for production on drained paddy fields under monsoon climate is demanded to coordinate technological development under changing climate. We recently recognized that the yield potential of recent US cultivars is greater than that of Japanese cultivars and this also may be responsible for different yield trends. Cultivar comparisons proved that higher yields are associated with greater biomass production specifically during early seed filling, in which high and well sustained activity of leaf gas exchange is related. In fact, the leaf stomatal conductance is considered to have been improved during last a couple of decades in the USA through selections for high yield in several crop species. It is suspected that priority to product quality of soybean as food crop, especially large seed size in Japan, did not allow efficient improvement of productivity. We also recently found a substantial variation of yielding performance under an environment of Indonesia among divergent cultivars from tropical and temperate regions through in a part biomass productivity. Gas exchange activity again seems to be involved. Unlike in North America where transpiration adjustment is considered necessary to avoid terminal drought, under the monsoon climate with wet summer plants with higher activity of gas exchange than current level might be advantageous. In order to explore higher or better-adjusted canopy function, the methodological development is demanded for canopy-level evaluation of transpiration activity. The stagnation of soybean yield would be broken through controlling variable water environment and breeding efforts to improve the quality-oriented cultivars for stable and high yield.

  • PDF