• 제목/요약/키워드: grouting efficiency

검색결과 60건 처리시간 0.027초

An improved approach to evaluate the compaction compensation grouting efficiency in sandy soils

  • Xu, Xiang-Hua;Xiang, Zhou-Chen;Zou, Jin-Feng;Wang, Feng
    • Geomechanics and Engineering
    • /
    • 제20권4호
    • /
    • pp.313-322
    • /
    • 2020
  • This study focuses on a prediction approach of compaction compensation grouting efficiency in sandy soil. Based on Darcy's law, assuming that the grouting volume is equal to the volume of the compressed soil, a two-dimensional calculation model of the compaction compensation grouting efficiency was improved to three-dimensional, which established a dynamic relationship between the radius of the grout body and the grouting time. The effectiveness of this approach was verified by finite element analysis. The calculation results show that the grouting efficiency decreases with time and tends to be stable. Meanwhile, it also indicates that the decrease of grouting efficiency mainly occurs in the process of grouting and will continue to decline in a short time after the completion of grouting. The prediction three-dimensional model proposed in this paper effectively complements the dynamic relationship between grouting compaction radius and grouting time, which can more accurately evaluate the grouting efficiency. It is practically significant to ensure construction safety, control grouting process, and reduce the settlement induced by tunnel excavation.

Experimental study on the performance of compensation grouting in structured soil

  • Zheng, Gang;Zhang, Xiaoshuang;Diao, Yu;Lei, Huayang
    • Geomechanics and Engineering
    • /
    • 제10권3호
    • /
    • pp.335-355
    • /
    • 2016
  • Most laboratory test research has focused on grouting efficiency in homogeneous reconstituted soft clay. However, the natural sedimentary soils generally behave differently from reconstituted soils due to the effect of soil structure. A series of laboratory grouting tests were conducted to research the effect of soil structure on the performance of compensation grouting. The effects of grouting volume, overlying load and grouting location on the performance of compensation grouting under different soil structures were also studied. Reconstituted soil was altered with added cement to simulate artificial structured soil. The results showed that the final grouting efficiency was positive and significantly increased with the increase of stress ratio within a certain range when grouting in normally consolidated structured clay. However, in the same low yield stress situation, the artificial structured soil had a lower final grouting efficiency than the overconsolidated reconstituted soil. The larger of normalized grouting volume could increase the final grouting efficiency for both reconstituted and artificial structured soils. Whereas, the effect of the overlying load on final grouting efficiencies was unfavourable, and was independent of the stress ratio. As for the layered soil specimens, grouting in the artificial structured soil layer was the most efficient. In addition, the peak grouting pressure was affected by the stress ratio and the overlying load, and it could be predicted with an empirical equation when the overlying load was less than the yield stress. The end time of primary consolidation and the proportion of secondary consolidation settlement varied with the different soil structures, grouting volumes, overlying loads and grouting locations.

도수터널의 차수 그라우팅 현장시험 (Field Experiments on the Cutoff Grouting Around Waterway Tunnel)

  • 김덕근;김교원
    • 지질공학
    • /
    • 제11권1호
    • /
    • pp.81-99
    • /
    • 2001
  • 터널의 차수그라우팅 효과를 확인하기 위하여 영천댐 도수터널 건설공사 중에 현장 그라우팅 시험을 수행하였다. 시험은 그라우팅 시기에 따라 굴착전, 굴착후 및 콘크리트 라이닝일 설치된 이후의 압밀 그라우팅 등으로 구분하였고, 주입재료, 암종 및 지질인자, 그라우팅공의 천공방향 및 주입단계에 따른 효과를 비교하도록 계획하였다. 재료의 특성에 따른 차수효과는 포틀랜드시멘트, 마이크로시멘트, 마이크로시멘트 마이크로시멘트+규산에 비해 우레탄이 가장 뛰어났으며, 시공시기에 따라서는 라이닝후 및 굴착후에 비해 굴착전 그라우팅시 차수효과가 뛰어났다. 암종에 따라서는 화산암 및 화강암지반에 비해 퇴적암지반에서 차수효과가 낮게 나타났는데 이는 퇴적암에 발달하는 절리틈새가 적고 절리 충전물이 많아서 주입재의 침투성 저조에 기인한 것으로 사료된다. RMR값과는 직접적인 상관성이 없으나 RMR 요소 중 절리틈의 간극이 클수록 차수효과가 높게 나타났다. 천공방향은 차수효과에 영향을 미치지 않았으나 주입방법은 천공 및 주입의 단계를 세분할 수록 높은 차수 효과를 기대할 수 있다.

  • PDF

Factors affecting waterproof efficiency of grouting in single rock fracture

  • Lee, Hang Bok;Oh, Tae-Min;Park, Eui-Seob;Lee, Jong-Won;Kim, Hyung-Mok
    • Geomechanics and Engineering
    • /
    • 제12권5호
    • /
    • pp.771-783
    • /
    • 2017
  • Using a transparent fracture replica with aperture size and water-cement ratio (w/c), the factors affecting the penetration behavior of rock grouting were investigated through laboratory experiments. In addition, the waterproof efficiency was estimated by the reduction of water outflow through the fractures after the grout curing process. Penetration behavior shows that grout penetration patterns present similarly radial forms in all experimental cases; however, velocity of grout penetration showed clear differences according to the aperture sizes and water-cement ratio. It can be seen that the waterproof efficiency increased as the aperture size and w/c decreased. During grout injection or curing processes, air bubbles formed and bleeding occurred, both of which affected the waterproof ability of the grouting. These two phenomena can significantly prevent the successful performance of rock grouting in field-scale underground spaces, especially at deep depth conditions. Our research can provide a foundation for improving and optimizing the innovative techniques of rock grouting.

절리암반내 그라우팅 성과에 대한 정량적인 판단기법 개발 (Accurate quantitative assessment of grouting efficiency in fractured rocks by evaluating the aperture sizes of fractures)

  • 김중열;김유성;김형수;백건하;김기석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.695-702
    • /
    • 2002
  • Groundwater flow is primarily influenced by the presence of fractures, functioning as conduits. To block the flow, grouting operation is commonly used. Thereby the fractures are then expected to be sealed, which will add to enhance the shear strength in rock. This far, regarding the assessment of grouting efficiency, however, there's been a considerable uncertainty That is, several geophysical methods of high resolution such as tomography, S-wave logging have produced a significant amount of measurable response caused by grouting, but they can inevitably be used only for the qualitative assessment. Thus, this paper deals with an accurate quantitative assessment about the grouting result. In this, a new strategy is introduced, based mainly on evaluating the opening of fractures. For fracture-opening investigation purposes, borehole Televiewer has already proven to be an excellent logging technique that produces both amplitude image and traveltime image. As well known, the traveltime image can be converted to a high precision 3D caliper log with max. 288 arms, which allows to observe the opening of fractures. To evaluate the fracture opening from the traveltime image, an algorithm of practical use was developed, in which image correction due to the borehole deviation, feature discrimination of wall roughness from fractures, automatic evaluation procedure etc. were considered. Field examples are shown to confirm the efficiency of the suggested method.

  • PDF

Combined bi-borehole technology for grouting and blocking of flowing water in karst conduits: Numerical investigation and engineering application

  • Pan, Dongdong;Zhang, Yichi;Xu, Zhenhao;Li, Haiyan;Li, Zhaofeng
    • Geomechanics and Engineering
    • /
    • 제29권4호
    • /
    • pp.391-405
    • /
    • 2022
  • A newly proposed grouting simulation method, the sequential diffusion solidification method was introduced into the numerical simulation of combined bi-borehole grouting. The traditional, critical and difficult numerical problem for the temporal and spatial variation simulation of the slurry is solved. Thus, numerical simulation of grouting and blocking of flowing water in karst conduits is realized and the mechanism understanding of the combined bi-borehole technology is promoted. The sensitivity analysis of the influence factors of combined bi-borehole grouting was investigated. Through orthogonal experiment, the influences of proximal and distal slurry properties, the initial flow velocity of the conduit and the proximal and distal slurry injection rate on the blocking efficiency are compared. The velocity variation, pressure variation and slurry deposition phenomenon were monitored, and the flow field characteristics and slurry outflow behavior were analyzed. The interaction mechanism between the proximal and distal slurries in the combined bi-borehole grouting is revealed. The results show that, under the orthogonal experiment conditions, the slurry injection rate has the greatest impact on blocking. With a constant slurry injection rate, the blocking efficiency can be increased by more than 30% when using slurry with weak time-dependent viscosity behavior in the distal borehole and slurry with strong time-dependent viscosity behavior in the proximal borehole respectively. According to the results of numerical simulation, the grouting scheme of "intercept the flow from the proximal borehole by quick-setting slurry, and grout cement slurry from the distal borehole" is put forward and successfully applied to the water inflow treatment project of China Resources Cement (Pingnan) Limestone Mine.

Evaluation of grout penetration in single rock fracture using electrical resistivity

  • Lee, Hangbok;Oh, Tae-Min;Lee, Jong-Won
    • Geomechanics and Engineering
    • /
    • 제24권1호
    • /
    • pp.1-14
    • /
    • 2021
  • In this study, a new approach using electrical resistivity measurement was proposed to detect grout penetration and to evaluate the grouting performance for such as waterproof efficiency in single rock fracture. For this purpose, an electrical resistivity monitoring system was designed to collect multi-channel data in real time. This was applied to a system for grout injection/penetration using a transparent fracture replica with various aperture sizes and water-cement mix ratio. The electrical resistivity was measured under various grout penetration conditions in real time, which results were directly compared to the visual observation images of grout penetration/distribution. Moreover, the grouting success status after the curing process was evaluated by measuring the electrical resistivity in relation to changes in frequency in fracture cells where grout injection and penetration were completed. Consequently, it was determined that the electrical resistivity monitoring system could be applied effectively to the detection of successful penetration of grouting into a target area and to actual field evaluation of the grouting performance and long-term stability of underground rock structures.

아크릴레이트계 주입약액의 특성 및 적용 (Characteristics and Applications of Acrylate Injection Material)

  • 천병식;류동성;조산연;정성남;여유현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.539-542
    • /
    • 1999
  • In this study, acrylate salt material of new chemical composition for injection grouting was prepared in the state of aqueous solution, and the chemical and physical properties of the material were investigated. The gelation time of the material was freely controllable through the control of added catalysts amount. As the viscosity of the material was very low (2∼3cps), its injection efficiency was expected to be very excellent. The variation of its viscosity plotted with the process of gelation revealed that the efficiency of its penetration into the ground soil was very excellent. The LD$\sub$50/ test on white mouse verified the toxicity of the material was very slight and substantially negligible. The grouting effect using the material was examined through field case histories.

  • PDF

현장 열응답 시험을 통한 수직 밀폐형 지중열교환기의 성능 평가 (Evaluation of performance of closed-loop vertical ground heat exchanger by In-situ thermal response test)

  • 이철호;박문서;곽태훈;최항석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.229-239
    • /
    • 2010
  • Performing a series of in-situ thermal response tests, the effective thermal conductivity of six vertical closed-loop ground heat exchangers was experimentally evaluated and compared each other, which were constructed in a test bed in Wonju. To compare thermal efficiency of the ground heat exchangers in field, the six boreholes were constructed with different construction conditions: grouting materials (cement vs. bentonite), different additives (silica sand vs. graphite) and the shape of pipe-sections (general U-loop type vs. 3 pipe-type). From the test results, it can be concluded that cement grouting has a higher effective thermal conductivity than that of bentonite grouting, and the efficiency of graphite better performs over silica sand as a thermally-enhancing addictive. In addition, a new 3 pipe-type heat exchanger provides less thermal interference between the inlet and outlet pipe than the conventional U-loop type heat exchanger, which results in superior thermal performance.

  • PDF

기반암에서 그라우팅에 의한 차수효과 (The Impermeable Effect for Bedrock Constructed by Grouting)

  • 여규권
    • 한국지반환경공학회 논문집
    • /
    • 제10권2호
    • /
    • pp.51-59
    • /
    • 2009
  • 본 연구는 댐 4개소의 기초지반에 실시된 암반 그라우팅에 대한 현장 시험결과를 통하여 RQD, 단위시멘트주입량, Lugeon값(Lu) 및 최대주입압력과의 상관관계를 비교 분석하였다. 본 연구현장에 대하여 댐 기초지반에서 암반 그라우팅을 실시한 후 차수성에 관한 개량효과 분석결과 변성암지역이 퇴적암지역 보다 우수한 것으로 조사되었다. 그리고 압밀(Consolidation) 그라우팅의 차수효과가 차수(Curtain) 그라우팅 보다 우수한 것으로 나타났다. 단위시멘트주입량은 RQD가 클수록 증가하는 경향을 보이나, Lugeon값은 RQD와 무관한 관계를 나타내고 있다. Lugeon값과 단위시멘트주입량(Vc)의 관계는 서로 비례하고 비교적 투수성이 큰 퇴적암 지역에서의 상관관계가 Lu = 0.22Vc인 직접적인 비례관계를 보였다. 기 시공된 인접공의 영향은 차수 그라우팅 보다 압밀 그라우팅이 큰 것으로 조사되었다. 그리고 주입순서에 따른 단위시멘트주입량과 Lugeon값의 변화는 거의 동일한 거동을 나타내고 있다.

  • PDF