• Title/Summary/Keyword: grouting effects

Search Result 99, Processing Time 0.028 seconds

The Effects of Reinforcing in Concrete Crack by AIG Method (Auto Injector Grouting을 이용한 콘크리트 균열 보강효과)

  • Oh, Se-Wook;Youn, Il-Ro;Cho, Hong-Dong
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.79-84
    • /
    • 2008
  • Auto injector grouting method as low pressure injected by using epoxy and Boyle's law is very excellent method in economical efficiency and construction work because injected process can be dealt with collectively. For estimation of filling capacity purpose of this study compared the Auto injector method with the piston injector method. In this study, the tests allow for width of crack, injected angle of epoxy resin and injected method were performed using concrete block specimen making artificial crack. The results of test, tilling et1iciency of epoxy by Auto Injector grouting method verify to better than the piston injector method and uniaxial strength increased about 11% than standard specimen.

A Study on the Tunnel Stability using Grouting Technique (그라우팅에 의한 터널 보강효과의 해석적 연구)

  • 이종우;이준석;김문겸
    • Tunnel and Underground Space
    • /
    • v.6 no.4
    • /
    • pp.298-305
    • /
    • 1996
  • Grouting technique is frequently used where a tunnel structure is passing through the shallow overburden area or where the thickness of hard rock above the tunnel is rather thin. However, engineering background on design process of the grout reinforcement does not seem to be fully understood until now. Mechanics of composite material is, therefore, introduced in this study to investigate the orthotropic material properties of the composites containing soil(or rock) and grouting material. These orthotropic material properties can be used to represent the reinfocement effects quantitatively. The model developed in this study is next applied to a typical tunnel structure and the grouting effect is analyzed numerically. The idea used in this study can be expanded to a situation where a pipe roofing or a forepoling technique is adopted and a simplified design procedure, similar to the model model introduced in this study, can be developed.

  • PDF

Improvement of bearing capacity of footing on soft clay grouted with lime-silica fume mix

  • Fattah, Mohammed Y.;Al-Saidi, A'amal A.;Jaber, Maher M.
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.113-132
    • /
    • 2015
  • In this study, lime (L), silica fume (SF), and lime-silica fume (L-SF) mix have been used for stabilizing and considering their effects on the soft clay soil. The improvement technique adopted in this study includes improving the behaviour, of a square footing over soft clay through grouting the clay with a slurry of lime-silica fume before and after installation of the footing. A grey-colored densified silica fume is used. Three percentages are used for lime (2%, 4% and 6%) and three percentages are used for silica fume (2.5%, 5%, 10%) and the optimum percentage of silica fume is mixed with the percentages of lime. Several tests are made to investigate the soil behaviour after adding the limeand silica fume. For grouting the soft clay underneath and around the footing, a 60 ml needle was used as a liquid tank of the lime-silica fume mix. Slurried silica fume typically contains 40 to 60% silica fume by mass. Four categories were studied to stabilize soft clay before and after footing construction and for each category, the effectiveness of grouting was investigated; the effect of injection hole spacing and depth of grout was investigated too. It was found that when the soft clay underneath or around a footing is injected by a slurry of lime-silica fume, an increase in the bearing capacity in the range of (6.58-88)% is obtained. The footing bearing capacity increases with increase of depth of grouting holes around the footing area due to increase in L-SF grout. The grouting near the footing to a distance of 0.5 B is more effective than grouting at a distance of 1.0 B due to shape of shear failure of soft clay around the footing.

Grouting diffusion mechanism in an oblique crack in rock masses considering temporal and spatial variation of viscosity of fast-curing grouts

  • Huang, Shuling;Pei, Qitao;Ding, Xiuli;Zhang, Yuting;Liu, Dengxue;He, Jun;Bian, Kang
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.151-163
    • /
    • 2020
  • Grouting method is an effective way of reinforcing cracked rock masses and plugging water gushing. Current grouting diffusion models are generally developed for horizontal cracks, which is contradictory to the fact that the crack generally occurs in rock masses with irregular spatial distribution characteristics in real underground environments. To solve this problem, this study selected a cement-sodium silicate slurry (C-S slurry) generally used in engineering as a fast-curing grouting material and regarded the C-S slurry as a Bingham fluid with time-varying viscosity for analysis. Based on the theory of fluid mechanics, and by simultaneously considering the deadweight of slurry and characteristics of non-uniform spatial distribution of viscosity of fast-curing grouts, a theoretical model of slurry diffusion in an oblique crack in rock masses at constant grouting rate was established. Moreover, the viscosity and pressure distribution equations in the slurry diffusion zone were deduced, thus quantifying the relationship between grouting pressure, grouting time, and slurry diffusion distance. On this basis, by using a 3-d finite element program in multi-field coupled software Comsol, the numerical simulation results were compared with theoretical calculation values, further verifying the effectiveness of the theoretical model. In addition, through the analysis of two engineering case studies, the theoretical calculations and measured slurry diffusion radius were compared, to evaluate the application effects of the model in engineering practice. Finally, by using the established theoretical model, the influence of cracking in rock masses on the diffusion characteristics of slurry was analysed. The results demonstrate that the inclination angle of the crack in rock masses and azimuth angle of slurry diffusion affect slurry diffusion characteristics. More attention should be paid to the actual grouting process. The results can provide references for determining grouting parameters of fast-curing grouts in engineering practice.

Numerical analyses using CFD on the pressure losses of the grout flow with variation of joint roughness and grout features (전산유동역학을 이용한 절리 거칠기 및 주입재 특성에 따른 그라우트 주입 시 압력 손실 해석)

  • Sagong, Myung;Ryu, Sung-ha
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.989-1002
    • /
    • 2018
  • Grouting for the rock joint is to strengthen the rock strata by infiltrating cement grout materials into the rock joints. Grouting is one of a field of study which is difficult to develop deterministic and quantitative design approach because of multiphase behaviors of grout materials and 3 dimensional features of rock joints. Therefore, GIN (Grouting Intensity Number) can be a good index with appropriate monitoring of pressure and volume of grout. In this paper, we investigate the effects of joint roughness (JRC) and rheology of cement material during the infiltration of cement grout material into rock joint through CFD (computational fluid dynamics) analyses. With rough joint surface and increase of WC ratio, the frictional resistance during the grouting increases. The results have been summarized with polynomial correlations.

A Fundamental Study on the Criteria of Basic Parameters for Planning Rock Grouting (암반 그라우팅 주요 계획인자의 기준값에 관한 기초연구)

  • Kim, Jongmin;Lee, Eung Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.2
    • /
    • pp.15-27
    • /
    • 2022
  • Despite the increasing applicability of rock grouting as a method for strengthening or disaster prevention by improving the stability of ground, criteria for planning parameters which can be used as minimum guideline are required since the current practice is mainly dependent on experience. In this study, the fundamental criteria for important parameters of rock grouting in terms of injection conditions such as water-cement ratio, injecting pressure, cement take and resulting effects such as deformation modulus and permeability are proposed. Those criteria are the results of analyses of a series of hydraulic fracturing tests and Lugeon tests, in-situ grouting tests at 17 sites in Korea and other countries, combined with the literature analyses of standards and previous research. In addition, the method for modifying proposed criteria according to water-cement ratio is also addressed since that in Korean practice is too high and therefore, should be adjusted to satisfy the conditions of balanced stable grouting. The results of this study can be used as a fundamental reference for more refined research in the future although they are still somewhat experience-dependent.

Numerical investigation on the effect of backfill grouting on ground behavior during shield TBM tunneling in sandy ground (사질토 지반을 통과하는 쉴드 TBM에서 뒤채움 그라우팅이 지반 거동에 미치는 영향에 대한 수치해석적 연구)

  • Oh, Ju-Young;Park, Hyunku;Chang, Seokbue;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.375-392
    • /
    • 2018
  • The shield TBM method is widely adopted for tunneling works in urban area because it has more beneficial ways to control settlement at ground surface than conventional mined tunneling. In the shield tunneling, backfill grouting at tail void is crucial because it is supposed not only to restraint ground deformation around tail void during excavation but also to compensate precedent ground settlement by pushing up the ground with highly pressurized grout. However, the tail void grouting has been found to be ineffective for settlement compensation particularly in sandy ground, which might be caused by complicate interaction between ground and tail void grouting. In this paper, the effects of tail void grouting on behavior of ground in shield TBM tunneling were investigated based on 3-dimensional finite element analyses. The results of numerical analyses indicated that backfill grouting actually reduces settlement by degrading settlement increasing rate in excavation, which means decrease of volume loss. Meanwhile, the grouting could not contribute to compensate the precedent settlement, because reduction of volume loss by grouting was found to be counterbalanced by volume change of ground.

A case study of sudden groundwater inundation in Seocheon Tunnel (서천터널 굴착 중 용출수 발생에 따른 터널 보수.보강 사례)

  • Choi, Hyuk;Kim, Sun-Kon;Kim, Heung-Kuk;Hong, Jun-Pyo
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1340-1347
    • /
    • 2006
  • During excavation in seocheon tunnel, sudden groundwater inundation occurred in complex hydro-geological environments prevailing in underground tunnel. Large volumes of groundwater flowed into tunnel at STA 54km600. The authors have provided a comprehensive background to hydro-mechanics of groundwater with a geological analysis, ground investigation, hydro- mechanical modelling etc. To reinforce tunnel, we have applied the TAS grouting and the steel multi-layer grouting, and comfirmed the effects of reinforcement.

  • PDF

Effects of Ground Improvement Depending on the Type of Soil by Compaction Grouting System (토질의 종류에 따른 CGS공법의 지반개량효과에 관한 연구)

  • Chun, Byung-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.211-220
    • /
    • 2002
  • CGS(Compaction Grouting System) is widely used in reinforcement of structural foundation and ground improvement in soft ground. But the effects of ground improvement depending on the type of soil must be studied in order to adopt in various soils (granular soil and cohesive soil). In this study, characteristics of ground improvement (the increase of N value, increase in unit weight, vertical displacement on the ground surface) by CGS method was compared through two cases that were performed in granular and cohesive soil. The results show that the closer to the grout hole, the more increase in N value and this trend appear distinctly in granular soil. Unit weight of ground increase largely near by the grout hole and decrease in far from it independently of the soil type. The vertical displacement on the ground surface appeared in smaller area in case of granular soil than cohesive soil.

A Time-Lapse Microgravity for Grout Monitoring (그라우팅 전후의 시간차 고정밀 중력탐사)

  • Park, Yeong-Sue;Rim, Hyoung-Rae;Lim, Mu-Taek;Koo, Sung-Bon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.101-106
    • /
    • 2007
  • A time-lapse microgravity survey on a newly widen road at Muan, where limestone cavities are developed, for monitoring the change of the subsurface density distribution before and after grouting. Microgravity monitoring is identified as a quick, easy and cost effective. But, it requires strict data acquisition and quality control due to the differences of conditions at measurements. The survey was carried out two times, that is, October 2005 and September 2006. The data were adjusted for reducing the effects due to the different condition of each survey. The processed data acquired in 2005 and 2006 were inverted into the subsurface density distributions. They show the change and development of density structure during the lapsed time, which implies the effects of grouting.

  • PDF