• Title/Summary/Keyword: group-specific sequences

Search Result 115, Processing Time 0.018 seconds

Phylogenetic ANalysis of Hepatitis G Virus by Group-Specific Sequences in the 5-Untranslated Region (5'-UTR 영역의 그룹특이적 염기서열에 의한 HGV의 계통분석)

  • Kim, Pu-Kyung;Park, Sung-Woo;Kim, Chong-Kyung;Baik, Hyung-Suk;Jang, Kyung-Lib
    • Journal of Life Science
    • /
    • v.8 no.3
    • /
    • pp.279-284
    • /
    • 1998
  • The nucleotide sequences of the 5'-untraslated region(5'-UTR) of Hepatitis G virus(HGV) from sera of Korean patients were determines. When compared to the previously reported isolates, the Korean isolates have higher sequence homology with the Japanese isolates indicating the geographic distribution of HGV variants. Interestingly, three discrete regions which are highly conserved among HGV isolates from the same geographical area, thus could be applied to distinguish HGV isolates from the different areas were noticed in the 5'-UTR. Based on the sequences of these group-specific regions, twenty four different HGV isolates could be classified into 5 groups. By using the group-specific regions, inconsistency in HGV typing when based on the different regions of HGV could be solved.

  • PDF

Identification of Marker Nucleotides for the Molecular Authentication of Arisaematis Rhizoma Based on the DNA Barcode Sequences (천남성(天南星) 유전자 감별을 위한 DNA 바코드 분석 및 Marker Nucleotide 발굴)

  • Kim, Wook Jin;Lee, Young Mi;Ji, Yunui;Kang, Young Min;Choi, Goya;Kim, Ho Kyoung;Moon, Byeong Cheol
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.35-43
    • /
    • 2014
  • Objectives : Official Arisaematis Rhizoma is described only three species, Arisaema amurnse, Arisaema erubescens, and Arisaema heterophyllum, in national Pharmacopoeia. However, other Arisaema species, Arisaema ringens, Arisaema takesimense and Arisaema serratum, also have been distributed as an inauthentic Arisaematis Rhizoma in the herbal market. To develop a reliable molecular authentication method for Arisaematis Rhizoma in species level, we analyzed DNA barcode regions using six Arisaema species. Methods : Thirty-eight samples of six Arisaema plants species (A. amurense, A. amurense f. serratum, A. heterophyllum, A. takesimense, and A. serratum) were collected from different habitate and nucleotide sequences of DNA barcode regions (rDNA-ITS, matK, and rbcL gene) were analyzed after PCR amplification. The species-specific sequences and phylogenetic relations were estimated using entire sequences of three DNA barcodes based on the analysis of ClastalW and UPGMA, respectively. Results : The comparative analysis of DNA barcode sequences were revealed inter-species specific nucleotides to distinguish the medicinal plant of Arisaema Rhizoma in species levels excluding between A. amurense and its subspecies (A. amurense f. serratum) and A. takesimense and A. serratum, respectively. However, we obtained sequence differences enough to discriminate authentic and inauthentic Arisaematis Rhizoma. Therefore, we suggest that these SNP type molecular genetic markers were an reliable method avaliable to identify official herbal medicines. Conclusions : These marker nucleotides could be useful to identify the official herbal medicines by providing definitive information that can identify original medicinal plant and distinguish from inauthentic adulterants and substitutes.

Molecular Authentication and Phylogenetic Analysis of Plant Species for Breeae and Cirsii Herba based on DNA barcodes (DNA 바코드 분석을 통한 소계(小薊) 및 대계(大薊) 기원식물 감별과 종간 유연관계 분석)

  • Moon, Byeong Cheol;Lee, Young Mi;Ji, Yunui;Choi, Goya;Chun, Jin Mi;Kim, Ho Kyoung
    • The Korea Journal of Herbology
    • /
    • v.28 no.3
    • /
    • pp.75-84
    • /
    • 2013
  • Objectives : The origin of Breeae Herba (So-gye) and Cirsii Herba (Dae-gye) is differently prescribed in Korean and Chinese modern pharmacopoeia. Since the similar morphological characteristics and chaotic plant names, moreover, the aerial part of Carduus crispus have been used as the Cirsii Herba. To develop a reliable method for correct identification of these herbal medicines and to evaluate the genetic relationship of these closely related plant species, we analyzed sequences of DNA barcode regions. Methods : Thirty-one samples of 6 medicinal plants (B. segeta, B. setosa, C. japonicum var. maackii, C. setidens, C. chanroenicum, and C. crispus) were collected from different habitate and nucleotide sequences of DNA barcode regions (rDNA-ITS, matK, and rbcL) were analyzed after amplification using appropriate primers reported in previous studies. The nucleotides of species-specific authentic marker and phylogenetic relations were estimated based on the entire sequences of DNA barcodes by the analysis of ClastalW and UPGMA, respectively. Results : In comparative analysis of DNA barcode sequences, we obtained specific nucleotides to discriminate the medicinal plant of Breeae/Cirsii Herba in species level and evaluated the phylogenetic relationship of these species. Futhermore, we identified distinct marker nucleotides enough to authenticate respective species. These sequence differences at corresponding positions were avaliable genetic markers to determine the botanical origins of Breeae Herbal as well as Cirsii Herba. Conclusions : These marker nucleotides would be useful to identify the official herbal medicines by providing of definitive information that can identify each plant species and distinguish from unauthentic adulterants and substitutes.

Molecular Identification of Anginosus Group Streptococci Isolated from Korean Oral Cavities

  • Park, Soon-Nang;Choi, Mi-Hwa;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.38 no.1
    • /
    • pp.21-27
    • /
    • 2013
  • Anginosus group streptococci (AGS) were classified based on the nucleotide sequences of the 16S rRNA gene (16S rDNA) and comprised Streptococcus anginosus, Streptococcus intermedius, and Streptococcus constellatus. It is known that AGS is a causative factor of oral and systematic diseases. The purpose of this study was to discriminate the 56 clinical strains of AGS isolated from Korean oral cavities using phylogenetic analysis of 16S rDNA and species-specific PCR at the species-level. The 16S rDNA of clinical strains of AGS was sequenced using the dideoxy chain termination method and analyzed using MEGA version 5 software. PCR was performed to identify the clinical strains using species-specific primers described in previous studies and S. intermedius-specific PCR primers developed in our laboratory. The resulting phylogenetic data showed that the 16S rDNA sequences can delineate the S. anginosus, S. intermedius, and S. constellatus strains even though the 16S rDNA sequence similarity between S. intermedius and S. constellatus is above 98%. The PCR data showed that each species-specific PCR primer pair could discriminate between clinical strains at the species-level through phylogenetic analysis of 16S rDNA nucleotide sequences. These results suggest that phylogenetic analysis of 16S rDNA and PCR are useful tools for discriminating between AGS strains at the species-level.

Marker Production by PCR Amplification with Primer Pairs from Conserved Sequences of WRKY Genes in Chili Pepper

  • Kim, Hyoun-Joung;Lee, Heung-Ryul;Han, Jung-Heon;Yeom, Seon-In;Harn, Chee-Hark;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.196-204
    • /
    • 2008
  • Despite increasing awareness of the importance of WRKY genes in plant defense signaling, the locations of these genes in the Capsicum genome have not been established. To develop WRKY-based markers, primer sequences were deduced from the conserved sequences of the DNA binding motif within the WRKY domains of tomato and pepper genes. These primers were derived from upstream and downstream parts of the conserved sequences of the three WRKY groups. Six primer combinations of each WRKY group were tested for polymorphisms between the mapping parents, C. annuum 'CM334' and C. annuum 'Chilsung-cho'. DNA fragments amplified by primer pairs deduced from WRKY Group II genes revealed high levels of polymorphism. Using 32 primer pairs to amplify upstream and downstream parts of the WRKY domain of WRKY group II genes, 60 polymorphic bands were detected. Polymorphisms were not detected with primer pairs from downstream parts of WRKY group II genes. Half of these primers were subjected to $F_2$ genotyping to construct a linkage map. Thirty of 41 markers were located evenly spaced on 20 of the 28 linkage groups, without clustering. This linkage map also consisted of 199 AFLP and 26 SSR markers. This WRKY-based marker system is a rapid and simple method for generating sequence-specific markers for plant gene families.

Effects of Substrate RNA Structure on the Trans-splicing Reaction by Group I Intron of Tetrahymena thermophila (Tetrahymena thermophila의 group I intron에 의한 trans-splicing 반응에 미치는 표적 RNA 구조의 영향분석)

  • 이성욱
    • Korean Journal of Microbiology
    • /
    • v.35 no.3
    • /
    • pp.211-217
    • /
    • 1999
  • Effects of subsh-ate RNA configuration on the tians-splicing reactcon by group I intron ribozyme of Tetralzynzena thern\ulcornerophila were analyzed with substrate RNAs which have been generated to have very stable structures with stem-loop. RNAinapping strategy was perfo~med in vivo as well as in virro to search the mosl accessible siles to the ~irms-splicing ribozymes in the substrate RNAs. Sequences present in the loop of the target RNAs have shown to be well recognized by and reacted with group I inlron ribozymes while sequences present in the stein do not. Thesc results were confirmed with the experiments of trans-cleavage and rmnssplicing reactmn with ihe specific ribozyines recognizing those sequences. Moreover, sequence analysis of the trans-splicing products have shown that irons-splicing reaction can proceed with high fidelity. In conclusion, the secondary structure of substrate RNAs is one of the most important factors to detemine the ribozyme activity.

  • PDF

Diversity of Butyrivibrio Group Bacteria in the Rumen of Goats and Its Response to the Supplementation of Garlic Oil

  • Zhu, Zhi;Hang, Suqin;Mao, Shengyong;Zhu, Weiyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.2
    • /
    • pp.179-186
    • /
    • 2014
  • This study aimed to investigate the diversity of the Butyrivibrio group bacteria in goat rumen and its response to garlic oil (GO) supplementation as revealed by molecular analysis of cloned 16S rRNA genes. Six wethers fitted with ruminal fistulas were assigned to two groups for a cross-over design with 28-d experimental period and 14-d interval. Goats were fed a basal diet without (control) or with GO ruminal infusion (0.8 g/d). Ruminal contents were used for DNA extraction collected before morning feeding on d 28. A total bacterial clone library was firstly constructed by nearly full-length 16S rRNA gene cloned sequences using universal primers. The resulting plasmids selected by Butyrivibrio-specific primers were used to construct a Butyrivibrio group-specific bacterial clone library. Butyrivibrio group represented 12.98% and 10.95% of total bacteria in control and GO group, respectively. In libraries, clones were classified to the genus Pseudobutyrivibrio, Butyrivibrio and others within the family Lachnospiraceae. Additionally, some specific clones were observed in GO group, being classified to the genus Ruminococcus and others within the family Ruminococcaceae. Based on the criterion that the similarity was 97% or greater with database sequences, there were 29.73% and 18.42% of clones identified as known isolates (i.e. B. proteoclasticus and Ps. ruminis) in control and GO groups, respectively. Further clones identified as B. fibrisolvens (5.41%) and R. flavefaciens (7.89%) were specifically found in control and GO groups, respectively. The majority of clones resembled Ps. ruminis (98% to 99% similarity), except for Lachnospiraceae bacteria (87% to 92% similarity) in the two libraries. The two clone libraries also appeared different in Shannon diversity index (control 2.47 and GO group 2.91). Our results indicated that the Butyrivibrio group bacteria had a complex community with considerable unknown species in the goat rumen.

Molecular Authentication of Pinelliae Tuber from its adulterants by the analysis of DNA barcodes, matK and rbcL genes (matK와 rbcL DNA 바코드 분석을 통한 반하(半夏) 및 반하(半夏) 유사 한약재 유전자 감별)

  • Lee, Young Mi;Moon, Byeong Cheol;Ji, Yunui;Kim, Wook Jin;Kim, Ho Kyoung
    • The Korea Journal of Herbology
    • /
    • v.28 no.6
    • /
    • pp.53-58
    • /
    • 2013
  • Objectives : Pinelliae Tuber has been used as a typical unauthentic herbal medicines. Due to the morphological similarity between Pinelliae Tuber and adulterants, the correct authentication is very difficult. Therefore, we introduced DNA barcode to establish a powerful tool for the authentication of Pinelliae Tuner from adulterants. Methods : To obtain DNA barcode regions, genomic DNA was extracted from nineteen specimens of Pinellia ternata, Pinellia pedatisecta, Pinellia tripartita, and Typhonium flagelliforme, and matK and rbcL genes were amplified. For identification of species specific sequences and analysis phylogenetic relationship, a comparative analysis were performed by the ClastalW and UPGMA based on entire sequences of matK and rbcL genes, respectively. Results : In comparison of two DNA barcode sequences, we elucidated the phylogenetic relationship showing distinct four groups depending on species and identified 40 and 20 species specific nucleotides enough to distinguish each species from matK and rbcL gene, respectively. The sequence differences at the corresponding positions were avaliable genetic marker nulceotides to discriminate the correct species among analyzed four species. These results indicated that phylogentic and comparative analysis of matK and rbcL genes are useful genetic markers to authenticate Pinelliae Tubers. Conclusions : The marker nucleotides enough to distinguish P. ternata, P. tripatrita, P. peditisecta, and T. flagelliform, were observed at 40 positions in matK gene and 20 positions in rbcL gene sequence, respectively. These differences can be used to authenticate Pinelliae Tuber from adulterants as well as discriminate each four species.

N-Terminal Amino Acid Sequences of Receptor-Like Proteins that Bind to preS1 of HBV in HepG2 Cells

  • Lee, Dong-Gun;Liu, Ming-Zhu;Kim, Kil-Lyong;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.29 no.2
    • /
    • pp.180-182
    • /
    • 1996
  • One of the essential functions of virus surface proteins is the recognition of specific receptors on target cell membranes, and cellular receptors play an important role in viral pathogenesis. But the earliest steps of hepatitis B virus (HBV) infection, such as hepatocyte receptor interaction with the virus, are poorly understood. Previous work has suggested an important role of the preS1 region of HBV envelope protein in mediating viral binding to hepatocytes. Although hepatitis B virus (HBV) infection appears to be initiated by specific binding of virions to cell membrane structures via one or potentially several viral surface proteins, data showing the identification or isolation of the HBV receptor (s) are not yet available. The receptor-like proteins on the plasma membrane surface of HepG2 cells that bind to PreS1 were separated and identified using affinity chromatography, and the amino-terminal amino acid sequences of the receptor-like proteins were determined.

  • PDF

Development of Streptococcus sanguinis-, Streptococcus parasanguinis-, and Streptococcus gordonii-PCR Primers Based on the Nucleotide Sequences of Species-specific DNA Probes Screened by Inverted Dot Blot Hybridization

  • Park, Soon-Nang;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.38 no.2
    • /
    • pp.43-49
    • /
    • 2013
  • The objective of this study was to develop PCR primers that are specific for Streptococcus sanguinis, Streptococcus parasanguinis, and Streptococcus gordonii. We designed the S. sanguinis-, S. parasanguinis-, and S. gordonii-specific primers, Ssa21-F3/Ssa21-R2, Spa17-F/Spa17-R, and Sgo41-F1/Sgo41-R1 respectively, based on the nucleotide sequences of the Ssa21, Spa17, and Sgo41 DNA probes that were screened using inverted dot blot hybridization (IDBH). The species-specificity of these primers was assessed against 43 strains of mitis group streptococci, including clinical strains of S. sanguinis, S. parasanguinis, and S. gordonii. The resulting PCR data revealed that species-specific amplicons had been obtained from all strains of the target species tested, and that none of these amplicons occurred in any other strains from other species. These results suggest that the Ssa21-F3/Ssa21-R2, Spa17-F/Spa17-R, and Sgo41-F1/Sgo41-R1 primers may be useful in detecting S. sanguinis, S. parasanguinis, and S. gordonii at the species level, respectively.