• Title/Summary/Keyword: group based optimization

Search Result 241, Processing Time 0.03 seconds

A cross-entropy algorithm based on Quasi-Monte Carlo estimation and its application in hull form optimization

  • Liu, Xin;Zhang, Heng;Liu, Qiang;Dong, Suzhen;Xiao, Changshi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.115-125
    • /
    • 2021
  • Simulation-based hull form optimization is a typical HEB (high-dimensional, expensive computationally, black-box) problem. Conventional optimization algorithms easily fall into the "curse of dimensionality" when dealing with HEB problems. A recently proposed Cross-Entropy (CE) optimization algorithm is an advanced stochastic optimization algorithm based on a probability model, which has the potential to deal with high-dimensional optimization problems. Currently, the CE algorithm is still in the theoretical research stage and rarely applied to actual engineering optimization. One reason is that the Monte Carlo (MC) method is used to estimate the high-dimensional integrals in parameter update, leading to a large sample size. This paper proposes an improved CE algorithm based on quasi-Monte Carlo (QMC) estimation using high-dimensional truncated Sobol subsequence, referred to as the QMC-CE algorithm. The optimization performance of the proposed algorithm is better than that of the original CE algorithm. With a set of identical control parameters, the tests on six standard test functions and a hull form optimization problem show that the proposed algorithm not only has faster convergence but can also apply to complex simulation optimization problems.

Use of design optimization techniques in solving typical structural engineering related design optimization problems

  • Fedorik, Filip;Kala, Jiri;Haapala, Antti;Malaska, Mikko
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1121-1137
    • /
    • 2015
  • High powered computers and engineering computer systems allow designers to routinely simulate complex physical phenomena. The presented work deals with the analysis of two finite element method optimization techniques (First Order Method-FOM and Subproblem Approximation Method-SAM) implemented in the individual Design Optimization module in the Ansys software to analyze the behavior of real problems. A design optimization is a difficult mathematical process, intended to find the minimum or maximum of an objective function, which is mostly based on iterative procedure. Using optimization techniques in engineering designs requires detailed knowledge of the analyzed problem but also an ability to select the appropriate optimization method. The methods embedded in advanced computer software are based on different optimization techniques and their efficiency is significantly influenced by the specific character of a problem. The efficiency, robustness and accuracy of the methods are studied through strictly convex two-dimensional optimization problem, which is represented by volume minimization of two bars' plane frame structure subjected to maximal vertical displacement limit. Advantages and disadvantages of the methods are described and some practical tips provided which could be beneficial in any efficient engineering design by using an optimization method.

The Integrated Design and Analysis of Manufacturing Lines (II) - Continuous Design, Analysis and Optimization through Digital Virtual Manufacturing (제조라인 통합 설계 및 분석(II) - 디지털 가상생산 기술 적용을 통한 지속적인 라인 설계, 분석 및 최적화 프로세스)

  • Choi, SangSu;Sung, Nakyun;Shin, Yeonsik;Noh, Sang Do
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.2
    • /
    • pp.148-156
    • /
    • 2014
  • Generally, over 95% of manufacturing cost is determined in the design and manufacturing preparation step, especially a great part of productivity is determined in the manufacturing preparation step. In order to improve the manufacturing competitiveness, we have to verify the problems that can be occurred in the production step and remove the unnecessary factors in the manufacturing preparation step. Thus, manufacturing industries are adopting digital manufacturing system based on modeling & simulation. In this paper, we introduce e-FEED system (electronic based Front End Engineering and Design) that is the integrated design and analysis system for optimized manufacturing line development based on simulation automation and explain the work process (Design, Analysis and Optimization) about manufacturing line development using e-FEED system. Also, the effect is described through the real implementation cases.

Application of Genetic and Local Optimization Algorithms for Object Clustering Problem with Similarity Coefficients (유사성 계수를 이용한 군집화 문제에서 유전자와 국부 최적화 알고리듬의 적용)

  • Yim, Dong-Soon;Oh, Hyun-Seung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.1
    • /
    • pp.90-99
    • /
    • 2003
  • Object clustering, which makes classification for a set of objects into a number of groups such that objects included in a group have similar characteristic and objects in different groups have dissimilar characteristic each other, has been exploited in diverse area such as information retrieval, data mining, group technology, etc. In this study, an object-clustering problem with similarity coefficients between objects is considered. At first, an evaluation function for the optimization problem is defined. Then, a genetic algorithm and local optimization technique based on heuristic method are proposed and used in order to obtain near optimal solutions. Solutions from the genetic algorithm are improved by local optimization techniques based on object relocation and cluster merging. Throughout extensive experiments, the validity and effectiveness of the proposed algorithms are tested.

Group Power Constraint Based Wi-Fi Access Point Optimization for Indoor Positioning

  • Pu, Qiaolin;Zhou, Mu;Zhang, Fawen;Tian, Zengshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.1951-1972
    • /
    • 2018
  • Wi-Fi Access Point (AP) optimization approaches are used in indoor positioning systems for signal coverage enhancement, as well as positioning precision improvement. Although the huge power consumption of the AP optimization forms a serious problem due to the signal coverage requirement for large-scale indoor environment, the conventional approaches treat the problem of power consumption independent from the design of indoor positioning systems. This paper proposes a new Fast Water-filling algorithm Group Power Constraint (FWA-GPC) based Wi-Fi AP optimization approach for indoor positioning in which the power consumed by the AP optimization is significantly considered. This paper has three contributions. First, it is not restricted to conventional concept of one AP for one candidate AP location, but considered spare APs once the active APs break off. Second, it utilizes the concept of water-filling model from adaptive channel power allocation to calculate the number of APs for each candidate AP location by maximizing the location fingerprint discrimination. Third, it uses a fast version, namely Fast Water-filling algorithm, to search for the optimal solution efficiently. The experimental results conducted in two typical indoor Wi-Fi environments prove that the proposed FWA-GPC performs better than the conventional AP optimization approaches.

Neo Fuzzy Set-based Polynomial Neural Networks involving Information Granules and Genetic Optimization

  • Roh, Seok-Beom;Oh, Sung-Kwun;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.3-5
    • /
    • 2005
  • In this paper. we introduce a new structure of fuzzy-neural networks Fuzzy Set-based Polynomial Neural Networks (FSPNN). The two underlying design mechanisms of such networks involve genetic optimization and information granulation. The resulting constructs are Fuzzy Polynomial Neural Networks (FPNN) with fuzzy set-based polynomial neurons (FSPNs) regarded as their generic processing elements. First, we introduce a comprehensive design methodology (viz. a genetic optimization using Genetic Algorithms) to determine the optimal structure of the FSPNNs. This methodology hinges on the extended Group Method of Data Handling (GMDH) and fuzzy set-based rules. It concerns FSPNN-related parameters such as the number of input variables, the order of the polynomial, the number of membership functions, and a collection of a specific subset of input variables realized through the mechanism of genetic optimization. Second, the fuzzy rules used in the networks exploit the notion of information granules defined over systems variables and formed through the process of information granulation. This granulation is realized with the aid of the hard C-Means clustering (HCM). The performance of the network is quantified through experimentation in which we use a number of modeling benchmarks already experimented with in the realm of fuzzy or neurofuzzy modeling.

  • PDF

Agent-based Lift-car Group Operation Optimization Model in High-rise Building Construction

  • Jung, Minhyuk;Park, Moonseo;Lee, Hyun-soo;Hyun, Hosang
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.221-225
    • /
    • 2015
  • To hoist construction workers to their working space is directly related to the productivity of building construction since hoisting tasks are carried out during the working time. In order to reduce hoisting time in the condition that the number of construction lift-cars is limited, various types of the lift-cars group operation plans such as zoning and sky-lobby have been applied. However, previous researches on them cannot be compared in the performance due to their methodological limitation, discrete-event simulation methods, and cannot be find better solution to increase the performance. Therefore, this research proposed the simulation-based optimization model combining the agent-based simulation method to the scatter search optimization methods. Using the proposed model, this paper carried out the comparison analysis on the performance of typical operation plans and also optimize an operation plans by controlling the service range of lift-cars, the size and number of service zones. In this case study, it is verified that better alternatives than typical operation plans can be exists and it is possible to increase the productivity of building construction.

  • PDF

Design of Particle Swarm Optimization-based Polynomial Neural Networks (입자 군집 최적화 알고리즘 기반 다항식 신경회로망의 설계)

  • Park, Ho-Sung;Kim, Ki-Sang;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.398-406
    • /
    • 2011
  • In this paper, we introduce a new architecture of PSO-based Polynomial Neural Networks (PNN) and discuss its comprehensive design methodology. The conventional PNN is based on a extended Group Method of Data Handling (GMDH) method, and utilized the polynomial order (viz. linear, quadratic, and modified quadratic) as well as the number of node inputs fixed (selected in advance by designer) at Polynomial Neurons located in each layer through a growth process of the network. Moreover it does not guarantee that the conventional PNN generated through learning results in the optimal network architecture. The PSO-based PNN results in a structurally optimized structure and comes with a higher level of flexibility that the one encountered in the conventional PNN. The PSO-based design procedure being applied at each layer of PNN leads to the selection of preferred PNs with specific local characteristics (such as the number of input variables, input variables, and the order of the polynomial) available within the PNN. In the sequel, two general optimization mechanisms of the PSO-based PNN are explored: the structural optimization is realized via PSO whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the PSO-based PNN, the model is experimented with using Gas furnace process data, and pH neutralization process data. For the characteristic analysis of the given entire data with non-linearity and the construction of efficient model, the given entire system data is partitioned into two type such as Division I(Training dataset and Testing dataset) and Division II(Training dataset, Validation dataset, and Testing dataset). A comparative analysis shows that the proposed PSO-based PNN is model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

Optimization simulation for High Voltage 4H-SiC DiMOSFET fabrication (고전압 4H-SiC DiMOSFET 제작을 위한 최적화 simulation)

  • Kim, Sang-Cheol;Bahng, Wook;Kim, Nam-Kyun;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.353-356
    • /
    • 2004
  • This paper discribes the analysis of the I-V characteristics of 4H-SiC DiMOSFET with single epi-layer Silicon Carbide has been around for over a century. However, only in the past two to three decades has its semiconducting properties been sufficently studied and applied, especially for high-power and high frequency devices. We present a numerical simulation-based optimization of DiMOSFET using the general-purpose device simulator MINIMIS-NT. For simulation, a loin thick drift layer with doping concentration of $5{\times}10^{15}/cm^3$ was chosen for 1000V blocking voltage design. The simulation results were used to calculate Baliga's figure of Merit (BFOM) as the criterion structure optimization and comparison.

  • PDF

Locationing of telemanipulator based on task capability

  • Park, Young-Soo;Yoon, Jisup;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.392-395
    • /
    • 1995
  • This paper presents a time efficient method for determining a sequence of locations of a mobile manipulator that facilitates tracking of continuous path in cluttered environment. Given the task trajectory in the form of octree data structure, the algorithm performs characterization of task space and subsequent multistage optimization process to determine task feasible locations of the robot. Firstly, the collision free portion of the trajectory is determined and classified according to uniqueness domains of the inverse kinematics solutions. Then by implementing the extent of task feasible subspace into an optimization criteria, a multistage optimization problem is formulated to determines the task feasible locations of the mobile manipulator. The effectiveness of the proposed method is shown through a simulation study performed for a 3-d.o.f. manipulator with generic kinematic structure.

  • PDF