• Title/Summary/Keyword: ground power supply

Search Result 198, Processing Time 0.03 seconds

Analysis of electric characteristics for extension power supply between different grounding railway distribution system (접지방식이 상이한 철도배전계통의 연장급전을 위한 전기적 특성분석)

  • Jung, Ho-Sung;Han, Moon-Seob;Lee, Chang-Mu;Kwon, Sam-Young;Park, Hyeun-Jun
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.736-741
    • /
    • 2005
  • This paper presents electric characteristics analysis and safe configuration for extension power supply between existent 6.6kV ungrounded distribution system and establishment and improvement 22.9kV direct grounding distribution system. For this, we model 6.6kV ungrounded and 22.9kV direct grounding distribution system of urban underground, ground region. and rural electrical, unelectrical region using PSCAD/EMTDC and analyze voltage drop, charging current, ground and short fault through simulation. To analyze electric characteristics of extension power supply, we simulate extension power supply of overhead line of 6.6kV ungrounded system and underground line of 22.9kV direct grounding system of rural electrical region and propose operation condition for safe extension power supply through result of analysis. Characteristics of voltage drop, charging current, ground and short fault appear almost similarly with electrical characteristic of direct power supply. However, because unbalance of phases may cause relay's malfunction of ungrounded system and ground fault current of direct grounding system may demage facilities of ungrounded system, we propose safe system configuration such as impedance grounding system of neutral point.

  • PDF

An Improved Synchronization Control Scheme of a Low Cost 400Hz Power Supply for No-Break Power Transfer (저가격 고 신뢰성의 400Hz 전원의 무순단 전력절환용 개선된 동기화 기법)

  • Joung, Seok-Eon;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.470-474
    • /
    • 2014
  • This study proposes an improved synchronization control scheme for a low-cost 400Hz power supply for a no-break power transfer system. In the case of aircraft applications, the 400Hz power supply called ground power units is accepted and used as the external electrical power system during stopovers on ground. A momentary break in the supply occurs when shifting from one power source to another. To allow shifting without a break in the supply, the two power sources are momentarily connected in parallel. The proposed synchronization control is achieved by connecting an existing synchronization bus to the voltage zero-crossing signal of a generator power with discrete logic ICs and analog circuits. Therefore, unlike expensive controllers, such as DSP and CAN, the proposed control scheme is rather simple and may decrease operational cost. The practical feasibility of the proposed control scheme is proven by experimental results.

Analysis of the Power Supply System of a Maglev Train (자기부상열차의 급전시스템 검토)

  • Lee, Hyung-Woo;Kwon, Sam-Young;Park, Hyun-June
    • Proceedings of the KSR Conference
    • /
    • 2006.11a
    • /
    • pp.209-218
    • /
    • 2006
  • This paper presents the comparison and analysis of the power supply system of a Maglev train and conventional electric railway. Even though all Maglev trains have batteries on their vehicles, electric power supply from the ground side is necessary for levitation, propulsion, on-board electrical equipment, battery recharging, and so on. At low speeds up to $100{\sim}150(km/h)$, the Maglev train, generally, uses a mechanical contact, a current collector as same as conventional electric railway. However, at high speeds, the Maglev train can no longer obtain power from the ground side by using a mechanical contact. Therefore, high speed Maglev trains use their own way to deliver the power to the vehicle from the ground. In this paper, the power supply systems of the german, japanese, and korean low- and high-speed Maglev trains have been reviewed.

  • PDF

Development of Delta-I ground fault Protective Relaying Scheme for DC Traction Power Supply System (비접지 DC 급전시스템에서의 Delta-I 지락보호계전 시스템)

  • Chung, Sang-Gi;Kwon, Sam-Young;Jung, Ho-Sung;Kim, Ju-Rak
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.12
    • /
    • pp.529-535
    • /
    • 2006
  • In DC tracking power supply system, ground faults are currently detected by the potential relay, 64P. Though 64P relay detects ground fault, it cannot identify the faulted region which causes long traffic delays and safety problem to passengers. A new ground fault protective relay scheme, ${\Delta}I$ ground fault protective relay, that can identify the faulted region is presented in this paper. In ${\Delta}I$ ground fault protective relaying scheme, ground fault is detected by 59, overvoltage relay, which operates ground switch installed between the negative bus and the ground. It preliminarily chooses the faulted feeder after comparing the current increases among feeders and trips the corresponding feeder breaker. After some time delay, it then recloses the breaker if it finds the preselected feeder is not the actual faulted feeder. Whether or not the preselected feeder is the actual faulted feeder is determined by checking the breaker trip status in the neighboring substation in the direction of the tripped breaker. If the corresponding breaker in the neighboring substation is also tripped, it finally judges the preselected feeder is actually a faulted feeder. Otherwise it recloses the tripped breaker. Its algorithms is presented and verified by EMTP simulation.

Development of Ground Fault Protective Relaying Schemes for DC Traction Power Supply System (DC 급전시스템의 지락보호계전시스템 개발)

  • Chung Sang-Gi;Jeong Rag-Gyo;Cho Hong-Sik;Lee Ahn-Ho;Kwon Sam-Young
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.9
    • /
    • pp.427-433
    • /
    • 2005
  • In DC tracking power supply system, ground faults are currently detected by the potential relay, 64P. Though 64P relay detects ground fault, it cannot Identify the faulted region which causes long traffic delays and safety problem to passengers. Two new ground fault protective relay schemes that can identify the faulted region are presented in this paper. One is bus differential protective relay and the other is ground overcurrent protective relay. Both type of relays is similar in principle to the ordinary bus differential protective relay and the ground overcurrent relay used in other power system. In DC traction power supply system, since it is ungrounded, ground fault current is not big enough to operate those relays. To solve the problem, a current control device, called device 'X', is newly introduced in both system, which enables large amount of ground fault current flow upon the positive line to ground fault. Algorithms for these relays are developed and their validity are verified by EMTP simulation.

A Study on Trouble and Arrangement of the Ground-Fault Protection for 2 Step Voltage Distribution System of Premises (2 Step 이상 운용 고객의 구내배전계통 지락보호시스템 구성 현황 및 문제점 검토)

  • Im, Jin-Sung;Shin, Myoung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.73-77
    • /
    • 2010
  • Most accidents occurred in power receiving & transforming facility are ground fault. The quality of power supply is deteriorated since the ground fault is not detected promptly. This paper analyzes the problems about system-grounding type of 2 step power receiving & transforming facility, arrangement of protection relaying scheme and ground-fault protection system of ungrounded system. Then, this paper presents the arranging scheme of system-grounding type to improve power supply reliability.

Analysis of Effective Soil Thermal Conductivities and Borehole Thermal Resistances with a Power Supply Regulation (부하변동에 의한 지중유효열전도도와 보어홀 전열저항 해석)

  • Ro, Jeong-Geun;Yon, Kwang-Seok;Song, Heon
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.80-86
    • /
    • 2011
  • Investigation of the effective soil thermal conductivity(k) is the first step in designing the ground loop heat exchanger(borehole) of a geothermal heat pump system. Another important factor is the borehole thermal resistance($R_b$). Thermal response tests offer a good method to determine the ground thermal properties for the total heat transport in the ground. This is done by supplying a constant heat power into a borehole heat exchanger. There are two methods to supply a constant heat power. One is to employ the electricity provided by Korea Electric Power Corporation(KEPCO). The other is to use electricity generated by a generator. In this study, the power supply regulation was found to reduce when the electricity generated by the generator was used. This is because the generator evaluated with the power supply characteristically reduces the power supply regulation between an overload and a complex using. But it sometimes occurs a power supply regulation in In-situ thermal response test. In this case getting of k,$R_b$ requires delay times and restored normal state. However, the effect of the delay times and restored normal state on the soil thermal conductivity and borehole thermal resistance is very small. Therefore it is possible to use a generally accepted delay times and restored normal state in the analysis. In this work, it is also shown that an acceptable range of ${\Delta}k$, ${\Delta}R_b$ for normal state and regulation state might be approximately 0.01-0.16W/m k, and -0.004-0.007m K/W, respectively. Thus, restored normal state of power supply regulation is valuable to recommend.

Ground fault protective relaying schemes for DC traction power supply system (비접지 DC 급전계통에서 전류형 지락보호계전 방법)

  • 정상기;정락교;이성혁;김연수;조홍식
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.412-417
    • /
    • 2004
  • In urban rail transit systems, ground faults in the DC traction power supply system are currently detected by the potential relay, 64P. Though it detects the fault it cannot identify the faulted region and therefore the faulted region could not be isolated properly. Therefore it could cause a power loss of the trains running on the healthy regions and the safety of the passengers in the trains could be affected adversely. Two new ground fault protective relay schemes that can identify the faulted region are presented in this paper. A current limiting device, called Device X, is newly introduced in both system, which enables large amount of ground fault current flow upon the positive line to ground fault. One type of the relaying schemes is called directional and differential ground fault protective relay which uses the current differential scheme in detecting the fault and uses the permissive signal from neighboring substation to identify the faulted region correctly. The other is called ground over current protective relay. It is similar to the ordinary over current relay but it measures the ground current at the device X not at the power feeding line, and it compares the current variation value to the ground current in Device X to identify the correct faulted line. Though both type of the relays have pros and cons and can identify the faulted region correctly, the ground over current protective relaying scheme has more advantages than the other.

The Analysis of Protection -Characteristics and Fault-Locator Simulation on the Electrical Railway (교류전기철도 보호특성 해석 및 고장점표정 시뮬레이션)

  • 창상훈;이장무
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.262-269
    • /
    • 1998
  • In case the fault occurs in AC power supply network, protective relaying system must selectively detect line-to-line/ground fault and immediately cut off the power flow into the fault location for guaranteeing the safety of people, electric vehicle and ground installation etc. It is the most important point in power system operation to minimize the fault duration by rapid trip scheme and accurate estimation of the fault location. In this paper, we analyze the load characteristics of each vehicle, perform the fault analysis of AC power supply network using AT current-ratio method. The result shows its usefulness.

  • PDF

Ground power supply system with position sensing for mobile robot (이동로봇의 위치 감지 기능을 갖는 바닥면 전력 공급 시스템)

  • Jin, Sang-Yun;Yi, Soo-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2417-2419
    • /
    • 2004
  • In this paper, we developed a ground power supply system through the ground electrodes for a mobile robot moving in the constrained region. By external scan circuit through the electrodes, it is also possible to detect the absolute position of the robot without any additional sensors. Since the heavy weighted-battery for electric power supply and the expensive absolute position sensors are removable from the robot by using for proposed system, the resulting mobile robot system becomes cost-effective and dynamically fast.

  • PDF