• 제목/요약/키워드: ground motions

검색결과 895건 처리시간 0.023초

Seismic Performance of SDF Systems with Tuned Liquid Damper Subjected to Ground Motions (지진 하중에 대한 동조액체감쇠기 성능 수치해석 검토)

  • Han, Sang-Whan;Oh, Seung-Bo;Ha, Sung-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제29권3호
    • /
    • pp.261-268
    • /
    • 2016
  • Tuned Liquid Dampers(TLD) are energy dissipation devices that have been proposed to control the dynamics response of structure. The TLD has been shown to effectively control the wind response of structures. However, controlling responses of structures with TLD under seismic loads are not fully investigated. The objective of this study is to evaluate the seismic performance of single degree of freedom(SDF) with TLDs having various tuning and mass raitos. For this purpose, analytical studies are conducted. Different soil conditions are considered in this study. As a result, performance of TLD, appeared diffrently depending on the natural period, damping ratio of the structure. Also TLD tuning ratio appeared differently.

Utilization of Mean Shear Wave Velocity to a Depth Shallower than 30m for Efficient Seismic Site Classification in Korea (우리나라 지진공학적 지반 분류를 위한 30m 미만 심도 평균 전단파 속도의 활용)

  • Sun, Chang-Guk;Chung, Choong-Ki;Kim, Dong-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.562-571
    • /
    • 2006
  • Mean shear wave velocity of the upper 30m $(V_s30)$ used as the current site classification criterion for determining seismic design ground motions in Korea was established based on the typical depth of site investigations in western US, in which the depth to bedrock is much deeper than that in Korea. In this study, to establish appropriate site classification system for site conditions of Korea, site investigations including in-situ seismic tests to determine shear wave velocity $(V_s)$ were carried out at total 72 sites in Korean peninsula. The mean $V_s's$ to the depths of 5m, 10m, 15m, 20m and 25m together with the $V_s30$ at the testing sites were determined, and the correlation between the mean $V_s$ to a depth shallower than 30m and the $V_s30$ was drawn and suggested for the efficient seismic site classification in Korea. The proposed correlation could be utilized for the seismic design in case of the $V_s$ profiles shallower than 30 m in depth. The correlation in this study, nevertheless, requires further modification by means of the accumulation of various site data in Korea.

  • PDF

Pseudo Dynamic Test for the Seismic Performance Enhancement of Circular RC Bridge Piers Retrofitted with Fibers (섬유보강 원형 철근콘크리트 교각의 내진성능 향상에 관한 유사동적 실험)

  • 정영수;박종협;박희상;조창백
    • Journal of the Korea Concrete Institute
    • /
    • 제14권2호
    • /
    • pp.180-189
    • /
    • 2002
  • The objective of this experimental research is to assess the seismic performance of circular RC bridge pier specimens retrofitted with fibers which were designed as a prototype of Hagal bridge in the city of Suwon, Korea. Pseudo dynamic test has been done for four(4) test specimens which were nonseismically or seismically designed by the related provisions of the Korea roadway bridge design specification, and four nonseisemic test specimens retrofitted with fibers in the plastic hinge region. Glass and carbon fiber sheets were used for the seismic capacity enhancement of circular test specimens. Important test parameters were confinement steel ratio, load pattern, and retrofitting. The seismic behavior has been analyzed through the displacement ductility, energy analysis, and capacity spectrum. Approximate 7.7 ∼8.7 displacement ductility was observed for nonseismic test specimens retrofitted with fibers subjected to Korea Highway Cooperation artificial earthquake motions. It is concluded that these retrofitted test specimens could have sufficient seismic capacity in the region of moderate seismic zone.

Inelastic Displacement Ratio for Strength-limited Bilinear SDF Systems (강도한계 이선형 단자유도 시스템의 비탄성 변위비)

  • Han, Sang-Whan;Lee, Tae-Sub;Seok, Seung-Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제14권4호
    • /
    • pp.23-28
    • /
    • 2010
  • This study evaluated the effect of vibration, level of lateral yielding strength, site conditions, ductility factor, strain-hardening ratio, and post-capping ratio of the strength limited bilinear SDF systems on the inelastic displacement ratio. The nonlinear response history analysis was conducted using 240 ground motions which were collected at the sites classified as site classes B, C, and D according to the NEHRP. To account for the P-$\Delta$ effects, this study considered negative stiffness ratios ranging from -0.1 to -0.5 of elastic stiffness. Four different damping ratios are used: 2, 5, 10, and 20%. From this study, an equation of inelastic displacement ratio was proposed using nonlinear regression analysis.

Analysis of Dynamic Behavior of Flexible Rectangular Liquid Containers by the Coupled Boundary Element-Finite Element Method (경계요소-유한요소 연계법에 의한 구형 수조구조물의 동적거동 특성해석)

  • Koh, Hyun Moo;Park, Jang Ho;Kim, Jaekwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제14권5호
    • /
    • pp.1033-1042
    • /
    • 1994
  • Dynamic behavior of flexible rectangular liquid containers is analyzed by a two-dimensional coupled boundary element-finite element method. The irrotational motion of inviscid and incompressible ideal fluid is modeled by boundary elements and the motion of structure by finite elements. A singularity free integral formulation is employed for the implementation of boundary element method. Coupling is performed by using compatibility and equilibrium conditions along the interface between the fluid and structure. The fluid-structure interaction effects are reflected into the coupled equation of motion as added fluid mass matrix and sloshing stiffness matrix. By solving the eigen-problem for the coupled equation of motion, natural frequencies and mode shapes of coupled system are obtained. The free surface sloshing motion and hydrodynamic pressure developed in a flexible rectangular container due to horizontal and vertical ground motions are computed in time domain.

  • PDF

Dynamic Response Analysis of Offshore Guyed Tower Subjected to Strong Earthquake under Moderate Random Waves (지진과 파랑하중을 동시에 받는 해양 가이드 타워의 비정상 동적 응답해석)

  • Ryu, Chung Son;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제13권4호
    • /
    • pp.65-75
    • /
    • 1993
  • Presented is a method for nonstationary response analysis of an offshore guyed tower subjected to strong earthquake motions under moderate random waves and current loadings. By taking the time varying envelope function and the auto-correlation function of the ground acceleration in terms of complex exponential functions, an analytical procedure is developed for computing time varying variances of the tower response. The stationary responses due to small random waves are obtained by using frequency domain method, and the results are combined with the nonstationary results due to earthquakes. Finally, the expected maximum responses are estimated. Through the example analyses, the nonstationary method developed in this study is verified, and the contributions of the earthquake, wave and current loadings to the total maximum response are investigated.

  • PDF

Demands and distribution of hysteretic energy in moment resistant self-centering steel frames

  • Lopez-Barraza, Arturo;Ruiz, Sonia E.;Reyes-Salazar, Alfredo;Bojorquez, Eden
    • Steel and Composite Structures
    • /
    • 제20권5호
    • /
    • pp.1155-1171
    • /
    • 2016
  • Post-tensioned (PT) steel moment resisting frames (MRFs) with semi-rigid connections (SRC) can be used to control the hysteretic energy demands and to reduce the maximum inter-story drift (${\gamma}$). In this study the seismic behavior of steel MRFs with PT connections is estimated by incremental nonlinear dynamic analysis in terms of dissipated hysteretic energy ($E_H$) demands. For this aim, five PT steel MRFs are subjected to 30 long duration earthquake ground motions recorded on soft soil sites. To assess the energy dissipated in the frames with PT connections, a new expression is proposed for the hysteretic behavior of semi-rigid connections validated by experimental tests. The performance was estimated not only for the global $E_H$ demands in the steel frames; but also for, the distribution and demands of hysteretic energy in beams, columns and connections considering several levels of deformation. The results show that $E_H$ varies with ${\gamma}$, and that most of $E_H$ is dissipated by the connections. It is observed in all the cases a log-normal distribution of $E_H$ through the building height. The largest demand of $E_H$ occurs between 0.25 and 0.5 of the height. Finally, an equation is proposed to calculate the distribution of $E_H$ in terms of the normalized height of the stories (h/H) and the inter-story drift.

Response transformation factors for deterministic-based and reliability-based seismic design

  • Bojorquez, Eden;Bojorquez, Juan;Ruiz, Sonia E.;Reyes-Salazar, Alfredo;Velazquez-Dimas, Juan
    • Structural Engineering and Mechanics
    • /
    • 제46권6호
    • /
    • pp.755-773
    • /
    • 2013
  • One of the main requirements of the seismic design codes must be its easy application by structural engineers. The use of practically-applicable models or simplified models as single-degree-of-freedom (SDOF) systems is a good alternative to achieve this condition. In this study, deterministic and probabilistic response transformation factors are obtained to evaluate the response in terms of maximum ductility and maximum interstory drifts of multi-degree-of-freedom (MDOF) systems based on the response of equivalent SDOF systems. For this aim, five steel frames designed with the Mexican City Building Code (MCBC) as well as their corresponding equivalent SDOF systems (which represent the characteristics of the frames) are analyzed. Both structural systems are subjected to ground motions records. For the MDOF and the simplified systems, incremental dynamic analyses IDAs are developed in first place, then, structural demand hazard curves are obtained. The ratio between the IDAs curves corresponding to the MDOF systems and the curves corresponding to the simplified models are used to obtain deterministic response transformation factors. On the other hand, demand hazard curves are used to calculate probabilistic response transformation factors. It was found that both approaches give place to similar results.

Evaluation of Nonlinear Seismic Performance Using Equivalent Responses of Multistory Building Structures (대표응답을 이용한 건축구조물의 비선형 지진응답 분석 및 내진성능평가)

  • 이동근;최원호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제5권6호
    • /
    • pp.65-76
    • /
    • 2001
  • Determination of ductility demand and prediction of nonlinear seismic responses of a structure under the earthquake ground motions have become a very important subject for evaluation of seismic performance in the performance based seismic design. In this study, the system ductility demand and nonlinear seismic responses of the steel moment framed structures by the nonlinear time history analysis are estimated and compared with those obtained from the capacity spectrum method suggested in ATC-40 and proposed method that is an improvement on the capacity spectrum method using the equivalent responses derived directly from a multi degree of freedom system. the adequacy and validity of the proposed method is verified by comparing the results evaluated by the method proposed in this study and the results obtained from method suggested in ATC-40 to the nonlinear seismic responses of the example structures from the nonlinear time history analysis.

  • PDF

Seismic Performance Evaluation of a RC Special Moment Frame Building (철근 콘크리트 특수 모멘트 골조 건물의 내진 성능 평가)

  • Kim, Tae-Wan;Kim, Jin-Koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제11권2호
    • /
    • pp.39-45
    • /
    • 2007
  • In this study the probability and the reliability-based seismic performance evaluation procedure proposed in the FEMA-355F was applied to a reinforced concrete moment frame building. For the FEMA procedure, which was originally developed for steel moment frame structures, to be applied to other structural systems, the capacity should be re-defined and the factors reflecting the uncertainties related to capacity and demand need to be determined. To perform the evaluation procedure a prototype building was designed per IBC 2003, and inelastic dynamic analyses were conducted applying site-specific ground motions to determine the parameters for performance evaluation. According to the analysis results, distribution of the determined capacities turned out to be relative]y smaller than that of the demands, which showed that the defined capacity was reasonable. It was also shown that the prototype building satisfied the target performance since the determined confidence levels exceeded the otjectives for both local and global collapses.