• Title/Summary/Keyword: ground model test

Search Result 1,135, Processing Time 0.023 seconds

A Study on The Engineering Characteristics of Corestone Ground Mass. (핵석지반의 강도 및 변형특성 연구)

  • Lee, Su-Gon;Kim, Dong-Eun;Lee, Chun-Young;Kim, Jae-Heun;Yang, Hong-Suk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.327-333
    • /
    • 2004
  • Corestone ground mass has complicated characteristics as it is made up of hard and stiff corestone in a relatively weak and soft matrix. Model corestone ground mass which is physically identical with the stiff corestone in weak matrix were tested in uniaxial compression. The tests show that the increase of the corestone proportion brought the gradual increase of the elastic modulus as well. The ground mass was weaker when the corestone proportion was low while it was stronger in higher corestone proportion. The size of the corestone had no influence on the strength and elastic modulus as long as the proportion of the corestone remains same.

  • PDF

A Study on Dielectrical Constant under Ground Conditions (지반조건에 따른 유전상수 변화에 관한 연구)

  • Cho, Jinwoo;Cho, Wonbeom;Kim, Jinman;Choi, Bonghyuck
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.17-25
    • /
    • 2012
  • In this study, dielectrical constant of the ground was measured using TDR method and correlated with water contents and density of ground. In order to evaluate the applicability as a cavity exploration, model experiments were carried out to analyze the effects of cavity size on the dielectrical constant. Test result indicated that dielectrical constant of the ground tended to linearly increase with the increase in water contents and density, which can be represented in a certain relational expression. Also, the dielectrical constant of ground varied sensitively with the cavity size of ground. The results conclude that the dielectrical constant, water contents and density of the ground proved to have a correlation among them, and the dielectrical constant is expected to be a basic data on cavity exploration.

Analysis of the effect factors on behavior of the surface reinforced very soft ground (표층처리된 초연약지반 거동에 대한 영향인자 분석)

  • You, Seung-Kyong;Lee, Jong-Sun;Yang, Kee-Sok;Cho, Sam-Deok;Ham, Tae-Gew;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.475-483
    • /
    • 2008
  • It is necessary to develop a national design method for surface reinforcement of very soft ground because most current design works rely on crude empirical correlations. In this paper, the mechanical behavior of very soft ground that is surficially reinforced was investigated with the aid of a sents of numerical analysis. Several material properties of each dredged soft ground, reinforcement and backfill sand mat have been exercised the numerical analysis in order to compare the result of numerical analysis with those of the laboratory model test. Through the matching process between the numerical and experimental result, it is possible to find the appropriate material properties of the dredged soft ground, reinforcements and backfill sand mat. These verified material properties permit to show the effect of the stiffness of reinforcement and the thickness of sand mat on the overall deformation.

  • PDF

Study of the Applicability of the Carson Line Model for the Series Reactance Calculation of the Power Feeding Lines with no Ground Return (전송로의 직렬리앤턴스 산정 시 Carson 모델의 적용범위 검토)

  • Chung, Sang-Gi;Kwon, Sam-Young;Chang, Sang-Hoon;Jang, Dong-Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.225-231
    • /
    • 2009
  • In this paper, it is shown that Carson's equation can still be applied for the calculation of the series reactance of transmission lines with no ground return current as well as the one with ground return. It is proved in the following method. First two voltage drop equations for three-phase three wire transmission line are derived, one without considering ground return and the other using Carson's equation. The impedance matrix of the two equations are different from each other. But if we put the condition of zero ground current, $I_a+I_b+I_c=0$, those two equations becomes the identical equations. Therefore even a transmission line is not grounded, its line parameters can still be obtained using the Carson's equation. It has been confused whether or not Carson's equation can be used for an ungrounded system. It is because where ever Carson's equation is shown in the book, it also says that the system has ground return current paths as a premise. It is also verified with EMTP studies on the test circuit.

A Study on the Soft Ground Improvement in Deep Depth by Application of PBD Method Using Model Test (실내모형실험을 통한 PBD공법이 적용된 대심도 연약지반 개량에 관한 연구)

  • Byun, Yoseph;Ahn, Byungje;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.69-77
    • /
    • 2009
  • The shortage of bearing capacity and settlement, shear deformation may occur when constructing a structure such as harbor, airport and bridge on soft ground such as marine clay, silty clay, sandy soil because it is very soft. The various ground improvement methods were applied to obtain preceding settlement of soft ground and strength increase. The vertical drain method has been used to reduce the required time for consolidation of the soft ground. Especially, the PBD (Plastic Board Drain) has been widely used among in the vertical drain method. In this study, a behavior of characteristic was evaluated by operating a compound drainage capacity test about the PBD (Plastic Board Drain) method applied in soft clay in deep depth. As a result, the settlement gradually occurred with increase of surface load. The consolidation settlement was processed with dissipation of pore pressure after surface load of $500kN/m^2$. Accordingly, it was found that change of settlement through load steps was resulted from dissipation of pore pressure. It was also found that the drainage capacity of vertical drains was considerably reduced with pressure increase and time elapse.

  • PDF

Research on the Surface Improvement of High Soft Ground Using Calibration Chamber Test (모형토조실험에 의한 초연약지반의 표층개량에 관한 연구)

  • Bang, Seongtaek;Yeon, Yongheum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.39-46
    • /
    • 2019
  • Most of the soil used for reclamation is marine clay generated from dredging construction.The soft ground made of dredged clay has high water content and high compressibility, so the bearing capacity of the ground is very weak and it is difficult to enter the ground improvement equipment. Therefore, surface hardening treatment method is used to enter equipment prior to full-scale civil engineering work, and stabilizer is mainly used for cement series. Cement-based stabilizers have the advantage of improving the ground in a short period of time and have excellent economic efficiency, but they are disadvantageous in that they cause environmental problems due to leaching of heavy metals such as hexavalent chromium. In this study, environmental effects evaluation of dredged clay mixed with normal portland cement and environmentally friendly stabilizer was evaluated, and uniaxial compressive strength test and indoor model test were conducted to confirm the bearing capacity characteristics of the solidified layer.

Behavior of the Ground in Rectangularly Crossed Area due to Tunnel Excavation under the Existing Tunnel (II) (기존터널에 근접한 직각교차 하부터널의 굴착에 따른 교차부지반의 거동 (II))

  • Kim, Dong-Gab;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.2
    • /
    • pp.133-141
    • /
    • 2005
  • The behavior of the ground in crossed zone due to the excavation of new lower tunnel rectangularly crossed to that was studied by model tests and numerical analysis in shallow cover. Results of the model tests show that earth pressure of the ground in crossed zone were redistributed due to the longitudinal arching effect by the excavation of lower tunnel. By the numerical analysis, minimum principal stress in crown of single tunnel has more decrease than parallel tunnel or crossed tunnel. Vertical stress at rectangularly crossed tunnel decrease more than single tunnel by stress shadow.

  • PDF

Evaluation of Plugging Effect of Open-Ended Model Pipe Pile (개단 강관말뚝의 폐색효과에 대한 모형실험 연구)

  • Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.175-181
    • /
    • 1987
  • Plugging effect of open-ended pipe piles is known to have a close relationship with the ratio of an embedment depth to a pile diameter, i.e., the relative embedment ratio. To evaluate this relationship in the concrete, load tests are performed on the open and the close ended model piles varying the relative embedment ratio as well as the relative density of the model test ground. Cross-shaped hollow plates are attached at the open pile ends to reduce the effective pile diameters, on which load tests are also performed. As a result, it is confirmed that higher plugging effect may be obtained in the denser ground at lower relative embedment. However, 100% plugging effect can be obtained at the relative embedment ratio of 25 or bigger regardless of the density of the ground. Increment of the plugging effect by introducing the cross-shaped attachment can hardly be achieved.

  • PDF

Pounding analysis of RC bridge considering spatial variability of ground motion

  • Han, Qiang;Dong, Huihui;Du, Xiuli;Zhou, Yulong
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.1029-1044
    • /
    • 2015
  • To investigate the seismic pounding response of long-span bridges with high-piers under strong ground motions, shaking table tests were performed on a 1/10-scaled bridge model consisting of three continuous spans with rigid frames and one simply-supported span. The seismic pounding responses of this bridge model under different earthquake excitations including the uniform excitation and the traveling wave excitations were experimentally studied. The influence of dampers to the seismic pounding effects at the expansion joints was analyzed through nonlinear dynamic analyses in this research. The seismic pounding effects obtained from numerical analyses of the bridge model are in favorable agreement with the experimental results. Seismic pounding effect of bridge superstructures is dependent on the structural dynamic properties of the adjacent spans and characteristics of ground motions. Moreover, supplemental damping can effectively mitigate pounding effects of the bridge superstructures, and reduce the base shear forces of the bridge piers.

Study on Numerical Analysis for Penetration Performance Evaluation of Doughnut-Type Suction Foundation in Sand Layer (모래지반에서 도넛형 석션기초의 관입 성능 평가를 위한 수치해석 기법에 대한 연구)

  • Haeyong Park;Osoon Kwon;Insuk Han;Hyoun Kang
    • Journal of Wind Energy
    • /
    • v.13 no.4
    • /
    • pp.70-79
    • /
    • 2022
  • It is difficult to control differential settlement and long-term settlement on soft ground with the template used in the pre-filing method of offshore wind power. In this study, the template adopted a suction foundation with high utility on soft ground. To analyze the penetration performance of the doughnut-type suction foundation, step-by-step numerical analysis was applied by calculating the minimum suction pressure needed for ground penetration at that depth. Scale model tests were performed and compared with the numerical analysis results. The ratio of the inside diameter compared to the outside diameter is higher, and penetration by suction was more advantageous than push-in load penetration. The step-by-step numerical analysis method showed an error within 2 % compared to the model tests, so the numerical analysis method confirmed results that the penetration performance of the doughnut-type suction foundation is valid.