A Study on Dielectrical Constant under Ground Conditions

지반조건에 따른 유전상수 변화에 관한 연구

  • 조진우 (한국건설기술연구원 GEO-인프라연구실) ;
  • 조원범 (한국건설기술연구원 GEO-인프라연구실) ;
  • 김진만 (한국건설기술연구원 GEO-인프라연구실) ;
  • 최봉혁 (한국건설기술연구원 GEO-인프라연구실)
  • Published : 2012.12.01

Abstract

In this study, dielectrical constant of the ground was measured using TDR method and correlated with water contents and density of ground. In order to evaluate the applicability as a cavity exploration, model experiments were carried out to analyze the effects of cavity size on the dielectrical constant. Test result indicated that dielectrical constant of the ground tended to linearly increase with the increase in water contents and density, which can be represented in a certain relational expression. Also, the dielectrical constant of ground varied sensitively with the cavity size of ground. The results conclude that the dielectrical constant, water contents and density of the ground proved to have a correlation among them, and the dielectrical constant is expected to be a basic data on cavity exploration.

본 논문에서는 TDR 장비를 사용하여 지반특성에 따라 변화하는 유전상수를 측정하였으며, 지반의 함수비 및 밀도와의 상관성을 분석하였다. 또한, 유전상수를 이용한 지중 공동탐사기법의 적용성을 평가하기 위하여 공동의 크기에 따른 유전상수의 변화 정도를 측정하였다. 실험결과 지반의 유전상수는 함수비와 밀도가 증가함에 따라 선형적인 증가 경향을 나타내는 것으로 평가 되었으며, 일정한 관계식으로 표현할 수 있었다. 또한, 지반의 유전상수는 공동의 크기에 따라 일정한 경향을 나타내며 변화하는 것으로 평가되었다. TDR 기법을 사용하여 측정된 유전상수값은 지반의 함수비, 밀도와 일정한 상관관계를 나타내고 있음을 확인하였으며, 지중 공동탐사에 관한 기초자료로서 활용할 수 있을 것으로 판단된다.

Keywords

References

  1. Curtis, J. and Narayanan, R.(1998), Effects of Laboratory Procedures on Soil Electrical Property Measurements, IEEE Transactions on Instrumentation and Measurement, Vol. 47, No. 6, pp. 1474-1480. https://doi.org/10.1109/19.746715
  2. Dowding, C. H. and Pierce, C. E.(1994), Use of Time Domain Reflectometry to Detect Bridge Scour and Monitor Pier Movement, Proceedings of the Symposium on Time Domain Reflectometry in Environmental, Infrastructure, and Mining Applications, Evanston, Illinois, Sept 7-9, U.S. Bureau of Mines, Special Publication, SP 19-94, NTIS PB95-105789, pp. 579-587.
  3. Kim, K. S. and Kwon, H. S.(2012), Application of TDR Probe in Embankment Compaction Control, Korea Geotechnical Society Magazine, Vol. 28, No. 1, pp. 39-44. https://doi.org/10.7843/kgs.2012.28.6.39
  4. Kim, K. Y., Han, H. S., Lee, J. H. and Park, M. C.(2011), Analysis of Saturation and Ground Water Level at Embankment by TDR Sensor, J. of Korea Geotechnical Society, Vol. 27, No. 2, pp. 63-72. https://doi.org/10.7843/kgs.2011.27.2.063
  5. Kim, J. M.(2011), Development of Integrated System of Damage Management for River Facility Using Ubiquitous Technology(II), Strategic Research Project Annual-report, KICT 2011-115, Korea Institute of Construction Technology, pp. 24-34.
  6. Kotdawala, S. J., Hossain, M. and Gisi, A. J.(1994), Monitoring of Moisture Changes in Pavement Subgrades Using Time Domain Reflectometry(TDR), Proceedings of the Symposium on Time Domain Reflectometry in Environmental, Infrastructure and Mining Application, Evanston, Illinois, Sept 7-9, U.S. Bureau of Mines, Special Publication, SP 19-94, NTIS PB95-105789, pp. 364-373.
  7. Ledieu, J., De Ridder, P. and Dautrebande, A.(1986), A Method for Measuring Soil Moisture by Time Domain Reflectometry, J. of Hydrology, Vol. 88, Issue 3-4, pp. 319-328. https://doi.org/10.1016/0022-1694(86)90097-1
  8. Ministry of Construction. & Transportation(2007), Development and Operation of Sluice Gate Management System in 2006, 11-1500000-002018-01, Korea Institute of Construction Technology, pp. 175-191.
  9. Ministry of Land, Transport and Marine Affairs(2009), Safety Inspection & Precision Safety Diagnosis, Detailed guidelines (Sluice Gate), Korea Infrastructure Safety & Technology Corporation, pp. 149-181.
  10. Park, J. B.(2002), Analysis on Electrical Conductance and Dielectric Property of Subsurface to Evaluate Subsurface Contamination Using Enviro-cone, Korea Science and Engineering Foundation, Final-report, R01-2002-000-00136-0, Seoul National University, pp. 52-59.
  11. Reynolds, J. M.(1997), An Introduction to Applied and Environmental Geophysics, John Wiley&Sons. pp. 115-140.
  12. Saarenketo, T.(1998), Electrical Properties of Water in Clay and Silty Soils, J. Applied Geophysics, Vol. 40, Issue 1-3, pp. 73-88. https://doi.org/10.1016/S0926-9851(98)00017-2
  13. Selig, E., T. and Mansukhani, S.(1975), Relationship of Soil Moisture to the Dielectric Property, J. of the Geotechnical Engineering Division, ASCE, Vol. 101, No. GT8, pp. 755-770.
  14. Topp, G. C., Davis, J. L. and Annan, A. P.(1980), Electromagnetic Determination of Soil Water Content: Measurement in Coaxial Transmission Line, Water Resources Research, Vol. 16, No. 3, pp. 574-582. https://doi.org/10.1029/WR016i003p00574
  15. Xiaozhen Jiang, Mingtang Lei, Yongli Gao, Yan Meng and Xiaohong Sang(2008), Monitoring Soil Void Formation along Highway Subgrade Using Time Domain Reflectometry(TDR), A Pilot Study at Guilin-Yangshuo highway, Guangxi, China, Proceedings of the Eleventh Multidisciplinary Conference, Sinkholes and the Engineering and Environmental Impacts of Karst(GSP 183), Tallahassee, FL, pp. 213-222.
  16. Xinbao Yu(2009), Experimental Study of an Innovative Bridge Scour Sensor, Ph.D. Dissertation, Case Western Reserve Univ., pp. 15-35.