• 제목/요약/키워드: ground model test

Search Result 1,135, Processing Time 0.03 seconds

Reduction Effect of Railroad Vibration by Utilizing Waste Tires (폐타이어의 철도진동 저감효과에 대한 실험적 연구)

  • Kim, Jin-Man;Lee, Kwang-Wu;Cho, Sam-Deok;Oh, Se-Yong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.1
    • /
    • pp.31-40
    • /
    • 2006
  • This paper describes the results of a series of field experiments which are carried out to assess the reduction effect of railroad vibration by utilizing waste tires. The ground vibration due to train service is measured in Honam Railroad line and Kyongbu Railroad line to assess the ground vibration with the domestic railroad line and train type before field model test. From the results of these tests, frequency on train service is presented from 5Hz to 100Hz and a range of excellence frequency is presented to be about from 20Hz to 40Hz in the domestic railroad line. Also, plate bearing tests are conducted to evaluate the variation of bearing capacity with different thickness of the waste tire layer and the fill layer. Finally, field model test is performed by using tire chips ($5cm{\times}5cm$ in size) as a reduction material of railroad vibration. The reduction effect of railroad vibration by utilizing waste tires increases with increasing the thickness of the waste tire layer and the frequency of the vibration source. The results of this experimental study was shown that the waste tire can be used for reduction of the railroad vibration.

Heading Failure Modes during Underground Excavation (지하공간 건설에 따른 굴착전면의 파괴모드)

  • Kwon, Oh-Yeob;Cho, Jae-Wan;Shin, Jong-Ho;Choi, Ypng-Ki;Shin, Yong-Suk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.409-416
    • /
    • 2005
  • Design analysis for underground spaces requires evaluating stability related to tunnel collapses. A failure mode is one of the critical factors in the conventional methods of stability analysis. Therefore identification of failure modes is essential in securing safe construction in the phase of design analysis, instrumentation planning and implementation of reinforcing measures. In this study failure modes at the tunnel heading in granular soils are investigated using physical model tests and numerical simulation for various tunnel depths and ground surface inclinations. Test results indicated that the effect of depth and inclination of ground surface on a failure mode are significant. It is identified that, with an incase in depth, failure modes become localized in a region close to the tunnel. It is also known that an increase in the inclination of ground surface results in inclined and wide failure modes.

  • PDF

Non-Destructive Test for Tunnel Lining Using Ground Penetrating Radar (지하레이다(GPR)를 이용한 터널 라이닝 비파괴시험에 관한 연구)

  • 김영근;이용호;정한중;신상범;조철현
    • Tunnel and Underground Space
    • /
    • v.7 no.4
    • /
    • pp.274-283
    • /
    • 1997
  • It is necessary to estimate the soundness of tunnel using non-destructive tests(NDT) for effective repairs and maintenances. But, the state of tunnel lining could not be investigated using previous non-destructive techniques, due to the various types of support and accessibility only from one side in tunnel lining. Recently, the various non-destructive techniques such as ground penetrating radar(GPR) have been researched and developed for inspection of tunnel lining. In this study, the usefulness and applicability of GPR test in tunnel lining inspection has been investigated through model tests and tunnel site application. This paper described the tunnel lining inspection for lining thickness, cavity and support using GPR test. From the results of tests, we have concluded that GPR test are very useful and effective techniques to look into the interior of lining and measure the lining thickness.

  • PDF

Durability Design of a Passenger Car Front Aluminum Sub-frame using Virtual Testing Method (가상시험기법을 이용한 승용차 전륜 알루미늄 서브프레임 내구설계)

  • Nam, Jin-Suk;Shin, Hang-Woo;Choi, Gyoo-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.368-375
    • /
    • 2012
  • Durability performance evaluation of automotive components is very important and time consuming task. In this paper, to reduce vehicle component development time and cost virtual testing simulation technology is used to evaluate durability performance of a passenger car front aluminum sub-frame. Multibody dynamics based vehicle model and virtual test simulation model of a half car road simulator are validated by comparisons between rig test results and simulation results. Durability life prediction of the sub-frame is carried out using the model with road load data of proving ground which can evaluate accelerated durability life. We found that the durability performance of the sub-frame is sufficient and it can be predicted within short time compared to rig test time.

Estimation of Bearing Capacity for Dreged and Reclaimed Ground (준설매립지반의 지지력 산정)

  • Lee, Choong-Ho;Kim, Ju-Hyun;Chae, Young-Su;Lee, Song
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.320-328
    • /
    • 2006
  • In this test, there was two dimensional model loading test implemented for analysis with respect to the problem of evaluating bearing capacity and the application range on the dredged and reclaimed ground. It was got following conclusion through comparison of button's and Brown&Meyerhof"s equation with experimental result that was obtained by 2 dimensions model loading test. For the difference between average undrained shear strength by 2/3B of loading board width and under 2/3B is more than ${\pm}$ 50%, application of Nc(coefficient of bearing capacity was used in that case $\phi$=0 analysis is considered in the single layer) was declined. Brown&Meyerhof(1969)'s equation was underestimated comparing with loading test result, while Button(1953)'s equation was overestimated comparing with loading test result applied dividing as double layers of upper dessication layer and lower soft layer about dredged and reclaimed ground. Also, bearing capacity factors, Nc that was calculated by using button's equation was estimated greatly about 1.7 times more than bearing capacity factors, Nc that was calculated by using Brown&Meyerhof's equation. Bearing capacity factors, Nc that was calcuated by using Brown&Meyerhof's and Button's equation was evaluated each 2.3-3.6 times, 1.3-2.1 times smaller than bearing capacity factors, Nc5.14 that was calcuated by using Meyerhof's equation in case of unit layer.

  • PDF

Investigation of ground behaviour between plane-strain grouped pile and 2-arch tunnel station excavation (2-arch 터널 정거장 굴착 시 평면변형률 조건에서 군말뚝의 이격거리에 따른 지반거동 분석)

  • Kong, Suk-Min;Oh, Dong-Wook;Ahn, Ho-Yeon;Lee, Hyun-Gu;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.6
    • /
    • pp.535-544
    • /
    • 2016
  • Special tunnel design and construction methods have been suggested due to developments of subway and tunnel. Collapse accidents of tunnel bring enormous damage. So, observation and analysis for the safety of tunnelling and behaviour of surrounding ground are important. But, it is not economical to implement the field test in every time. Therefore, this study has measured ground behaviour due to excavation of 2-arch tunnel station according to offset between grouped pile and tunnel by laboratory model test. For the model test, trapdoor device was adopted. Tunnelling is simulated by volume loss of 2-arch tunnel. Ground displacements are observed by close range photogrammetric method and image processing. In addition, these data are compared with numerical analysis.

Behavior characteristics of Light-Weight Pavement Using Centrifuge Test (원심모형실험을 이용한 경량포장체의 거동특성)

  • Kim, Seong-Kyum;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5176-5183
    • /
    • 2013
  • In general, Korean Lightweight Concrete used Heat insulating material for building and filler for civil construction, backfill material for tunnel, office floor fillers, lightweight blocks and so on. These expand the range of use ALC(autoclaved lightweight concrete) on the soft-ground at regular intervals during road construction by installing piles used as substrates for the process is under study. In this study, behavior characteristics on the soft-ground of pavement analysis was used to test the geo-Centrifuge. Prototype pavement reduced to 1/30 slab form of the composition as kaolinite model tests were conducted in the soft ground. Pile Arrangement (having 36 component pile with an array of $3{\times}12$) was used to group of piles. Tests of gravity 30 level the centrifugal force acting Light-weight pavement models. Based on the Prototype pavement of the behavior characteristics of pavement behavior characteristics were estimated. FMA analysis of the 10 times as big 39.4kg (actual load 35 ton) of the lateral load is applied to the case 7.8mm (actual behavior 23.4mm) behavior was fine.

Dynamic Characteristics of the Box Structure in Multi-layered Ground Under Earthquake Load (지진하중을 받는 다층지반내 박스구조물의 동적 특성)

  • Kim, In Dae;Shin, Eun Chul;Park, Jeong Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.55-63
    • /
    • 2020
  • In this study, a scaled model test of the shaking table and a seismic analysis considering effective stresses were performed to reveal the dynamic behavior characteristics of box structures deep located in multi-layered soils upon seismic loading. The input seismic wave was operated below the ground using five seismic waves, including long period wave (Hachinohe), short period wave (Ofunato), artificial wave and real earthquakes that occurred in Gyeong-ju and Po-hang. As a result of model test and numerical analysis, the vertical displacement of box structures upon seismic loading was greater than that of horizontal direction, and it was confirmed that an increase of excess pore water pressure below the foundation ground caused a displacement. In addition, behavior of the ground and structures during artificial seismic wave appeared to be larger than real earthquake wave.

Dynamic Performance of Pedestrian Guardrail System based on 3-D Soil Material Model according to Post Shapes (지주 형상에 따른 3차원 지반재료 모델의 경기장 보행자용 가드레일 동적성능 평가)

  • Yang, Seung-Ho;Lee, Dong-Woo;Shin, Young-Shik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.79-86
    • /
    • 2015
  • This study investigated the embedded depth of guardrail posts through 3-D soil material model and carried out evaluation of the dynamic performance of guard rail. In order to calculate for embedded depth of sloping ground, displacement of guardrail posts is analyzed according to the embedded depth of experiment variables. Through the static test of guardrail posts, the maximum deflection was found to decrease the interval. By performing the dynamic test using the Bogie Car, that is confirmed the elastic modulus of the soil occuring the maximum deflection. Guardrail posts is considered to need for further reinforcement in the larger slope than the plains. This study researched about maximum displacement and deviation velocity through dynamic performance of guardrail system and conducted analysis about protection performance evaluation of passenger.

Lateral Earth Pressures on Buried Pipes due to Lateral Flow of Soft Grounds (연약지반의 측방유동으로 인하여 매설관에 작용하는 측방토압)

  • Hong, Byungsik;Kim, Jaehong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.9
    • /
    • pp.27-38
    • /
    • 2010
  • A series of model test as well as numerical analysis by FEM was performed to investigate lateral earth pressure acting on a buried pipe in soft ground undergoing horizontal soil movement. A model test apparatus was manufactured so as to simulate horizontal soil movement in model soft ground, in which a model rigid buried pipe was installed. The velocity of soil deformation could be controlled as wanted during testing. The model test was performed on buried pipes with various diameters and shapes to investigate major factors affected the lateral earth pressure. The result of model tests showed that the larger lateral earth pressure acted on the buried pipes under the faster velocity of soil movement. The result of numerical analysis, which was performed under immediate loading condition, showed a similar behavior with the result of model tests under 0.3mm/min to 1.0mm/min velocity of soil deformation. Most of model tests showed the soil deformation-lateral load behavior, in which the first yielding load developed at small soil deformation and elastic behavior was observed by the yielding load. Then, lateral load was kept constant by the second yielding load, in which plastic behavior was observed between the first yielding load and the second yielding one. Beyond the second yielding load, the compression behavior zone was observed. When the velocity was too fast, however, the lateral load was increased with soil deformation beyond the first yielding load without showing the second yielding load. The buried pipes with the larger diameter was subjected to the larger lateral load and the larger increasing rate of lateral load. At small soil deformation, the influence of diameter and shape of buried pipes on lateral load was small. However, when soil deformation was increased considerably, the influence became more and more.