• Title/Summary/Keyword: ground loading

Search Result 704, Processing Time 0.028 seconds

The behavior of tunnel and ground according to the loading of building construction on the ground (터널 상부 지반에 시공되는 건물 하중에 따른 터널 및 주변지반의 거동)

  • Cha, Seok-Kyu;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.731-742
    • /
    • 2018
  • Recently, the construction of the urban area has been rapidly increasing, and the excavation work of the ground has been frequently performed at the upper part of the existing underground structure. Especially, when the structure is constructed after the excavation of the ground, the loading and unloading process is repeated in the lower ground of the excavation so that it can affect existing underground structures. Therefore, in order to maintain the stability of the existing underground structure due to the excavation of the ground, it is necessary to accurately grasp the influence of the excavation and the structure load in the adjoining part. In this study, the effects of the ground excavation and the new structure load on the existing tunnel were investigated by large - scale experiment and numerical analysis. For this purpose, a large model tester with a size reduced to 1/5 of the actual size was constructed, and model tests and numerical analyzes were carried out to investigate the effects of the excavation of the body ground by maintaining the distance between the excavation floor and the tunnel ceiling constant, The impacts were identified. As a result of the study, it was confirmed that the deeper the excavation depth, the larger the influence on the existing tunnel. At the same distance, it was confirmed that the tunnel displacement increased with the increase of the building load, and the ground stress increased up to 2.4 times. From this result, it was confirmed that the effect of the increase of the underground stress on the existing tunnel is affected by the increase of the building load, and the influence of the underground stress is decreased from the new load width above 3.0D.

Evaluation of Design Parameters for Axial Bearing Capacity of Drilled Shafts by Bi-directional Loading Tests (양방향말뚝 재하시험을 통한 현장타설말뚝의 연직지지력 설계정수 산정)

  • Jung, Gyung-Ja;Cho, Chong-Suck;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.574-584
    • /
    • 2006
  • Bi-directional loading test data are available to evaluate the design parameters which reflect the characteristics of a construction method and the variations of ground at the site where drilled shafts are installed. The method to obtain the design parameters of a real bridge by hi-directional loading test was introduced. The plans of multi-level testing and installation of measuring instruments should be made according to the rough estimation of axial bearing capacity, the length of pile, and the construction method. While the relationship between end bearing resistance and displacement was obtained directly from the hi-directional loading test, the relationship between unit side resistance and displacement was calculated through the measuring values. 1% displacement of pile diameter was adopted as the criteria of failure for ultimate resistance. As the settlement of pile head at the total ultimate bearing capacity obtained from these method was less than 1.5 % of pile diameter, this method was conservative to use in the field.

  • PDF

Effects of loading conditions and cold joint on service life against chloride ingress

  • Yang, Keun-Hyeok;Mun, Ju-Hyun;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.319-326
    • /
    • 2018
  • RC (Reinforced Concrete) members are always subjected to loading conditions and have construction joints when constructed on a big scale. Service life for RC structure exposed to chloride attack is usually estimated through chloride diffusion test in sound concrete, however the test is performed without consideration of effect of loading and joint. In the present work, chloride diffusion coefficient is measured in concrete cured for 1 year. In order to evaluate the effect of applied load, cold joint, and mineral admixtures, OPC (Ordinary Portland Cement) and 40%-replaced GGBFS (Ground Granulated Blast Furnace Slag) concrete are prepared. The diffusion test is performed under loading conditions for concrete containing cold joint. Investigating the previous test results for 91 days-cured condition and the present work, changing diffusion coefficients with applied stress are normalized considering material type and cold joint. For evaluation of service life in RC continuous beam with 2 spans, non-linear analytical model is adopted, and service life in each location is evaluated considering the effects of applied stress, cold joint, and GGBFS. From the work, varying service life is simulated under various loading conditions, and the reduced results due to cold joint and tensile zone are quantitatively evaluated. The effect of various conditions on diffusion can provide more quantitative evaluation of chloride behavior and the related service life.

Bearing Capacity of Waste Landfill Reinforced by Geosynthetics (토목섬유로 보강된 폐기물 매립지반의 지지력 특성)

  • Shin, Eun-Chul;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.3
    • /
    • pp.39-46
    • /
    • 2007
  • Many industrialized countries of the world have many problems about the reuse of waste landfill area because the increase of terminated waste disposal landfill. Especially, the effective use of the terminated waste disposal landfill nearby the urban area has been demanded, because of the lack of the usable land. However, the reuse of terminated waste disposal landfill site is needed an adequate stabilization of ground for increasing the bearing capacity and reduce the allowable settlement for the given structure. This study is to evaluate the applicability of geosynthetics for the increment of bearing capacity of solid waste landfill ground. The in-situ cyclic plate loading tests were performed to determine the dynamic and static behaviors of reinforced ground with geosynthetics. Four series of test were conducted with variations of geosynthetics, number of geogrid layer. Based on the cyclic plate load test results, the bearing capacity ratio, subgrade modulus of ground, and the elastic rebound ratio were determined.

  • PDF

Influence of Midsole Hardness on Vertical Ground Reaction force and Heel Strike Angle during Men's and Women's Running (남녀 주행 시 수직 지면반력 및 착지 각도에 미치는 신발 중저 경도의 영향)

  • Lee, Yong-Ku;Kim, Yoon-Hyuk
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.379-386
    • /
    • 2009
  • During running, the human body experiences repeated impact force between the foot and the ground. The impact force is highly associated with injury of the lower extremity, comfort and running performance. Therefore, shoemakers have developed shoes with various midsole properties to prevent the injury of lower extremity, improve the comfort and enhance the running performance. The purpose of this study is to investigate the influence of midsole hardness on vertical ground force and heel strike angle during men's and women's running. Five male and five female expert runners consented to participate in the study and ran at a constant speed with three different pairs of shoes with soft, medium and hard midsole respectively. In conclusion, regardless of gender, there was ill significant difference among three shoes in maximum vertical ground reaction force, impact force peak and stance time. However, the loading time decreased and the loading rate increased as the midsole became harder. Female subjects showed more sensitive reaction with respect to the midsole hardness, while male subjects showed subtle difference. The authors expect to apply this results for providing a guideline for utilizing proper midsole hardness of gender-specific shoe.

Dynamic Characteristics of the Box Structure in Multi-layered Ground Under Earthquake Load (지진하중을 받는 다층지반내 박스구조물의 동적 특성)

  • Kim, In Dae;Shin, Eun Chul;Park, Jeong Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.55-63
    • /
    • 2020
  • In this study, a scaled model test of the shaking table and a seismic analysis considering effective stresses were performed to reveal the dynamic behavior characteristics of box structures deep located in multi-layered soils upon seismic loading. The input seismic wave was operated below the ground using five seismic waves, including long period wave (Hachinohe), short period wave (Ofunato), artificial wave and real earthquakes that occurred in Gyeong-ju and Po-hang. As a result of model test and numerical analysis, the vertical displacement of box structures upon seismic loading was greater than that of horizontal direction, and it was confirmed that an increase of excess pore water pressure below the foundation ground caused a displacement. In addition, behavior of the ground and structures during artificial seismic wave appeared to be larger than real earthquake wave.

3-Dimensional Design Failure Curve of Marine Silty Sand under Different Confining Pressures Subjected to Cyclic Loading (반복하중을 받는 해양 실트질 모래의 구속압에 따른 3차원 설계파괴곡선 산정)

  • Suwon, Son;Jongchan, Yoon;Jinman, Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.12
    • /
    • pp.25-31
    • /
    • 2022
  • Unlike structures installed on land, the structures installed on the offshore ground must consider long-term cyclic loads such as wave loads, wind loads and tidal loads at sea. Therefore, it is important to analyze the behavior of the ground subjected to long-term cyclic loads in order to design a structure installed on the ocean ground. In this paper, cyclic simple shear tests were performed to analyze the ground behavior for long-term cyclic loads according to the confining pressure, and a three-dimensional design failure curve was prepared that can easily check the failure characteristics according to the confining pressure. As a result of the analysis, it was confirmed that the position of the design failure curve is different depending on the confining pressure even under the same conditions of the cyclic shear stress ratio and the average shear stress ratio, and the number of cyclic loads reaching failure is affected by the confining pressure. From the created 3-D design failure curve under different confining pressure, the tendency and approximate value of the design failure curve according to the confining pressure can be estimated.

Model Tests on Deformation Behavior of Soft Ground Under Embankment (성토하부 연약지반의 변형거동에 관한 모형실험)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Hong, Won-Pyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.17-28
    • /
    • 2009
  • When embankments are constructed on soft clay deposit, unsymmetrical surcharges due to embankments may generate the excessive vertical settlement and lateral deformation of soft clay foundation. The excessive deformations in soft grounds cause not only stability problem of the embankment itself but also that of the adjacent structures. The objectives of this research are to study the deformational behavior of soft ground due to the embankment load with different loading and soil conditions. Five model tests are carried out with different test conditions. From the results of the model tests, it is concluded that the lateral displacement induced by the embankment load occurs in the range of two times of the embankment width from a toe. In addition, the relationship between loading rate, v, and the vertical settlement of the soft ground, ${\Delta}s$, and the lateral displacement at the toe of embankment, ${\Delta}y_m$, is investigated based on the model test results.

A Case Study on the Ground Reinforcement Method and Effect of the Failed Tunnel (터널붕괴지반의 보강공법 및 효과에 대한 사례연구)

  • Cho, Hyun;Lim, Jae-Seung;Chung, Yoon-Young;Choi, Sang-Yeul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.293-300
    • /
    • 1999
  • The maintenance for the stability of tunnel, especially on downtown area, careful check must be considered during construction stage and after. Moreover we have to achieve the stability of tunnel by ground improvement and reinforcement when ground condition is bad or tunnel failures under the various ground conditions. In this paper, it is presented the case of tunnel failure and the state of restoration by ground reinforcements at seoul subway $\bigcirc$-$\bigcirc$ construction site. For the purpose of ground reinforcement, first, curtain wall was established by chemical grouting. Secondly, cement milk grouting was carried by upper part of tunnel crown. Also Boreholes loading test and tunnel monitoring were carried by in failure site for the long term stability of tunnel.

  • PDF

Application of Rock Splitter to Rock Excavation in an Open pit (노천현장 암 파쇄 굴착에 따른 할암공법의 적용성 고찰)

  • Won, Yeon-Ho;Kang, Choo-Won
    • Explosives and Blasting
    • /
    • v.28 no.1
    • /
    • pp.63-70
    • /
    • 2010
  • This study is investigated the extent of the noise and ground vibration in an adjacent zone of a cattle pen and an antiquated housing structures for judgement of the spot applicability on the extents of the noise and ground vibration of the rock-splitting method by an oil pressure. It is studied by measuring and analysing in an adjacent position the extents of the noise and ground vibration according to the work process of the rock-splitting method, such as drilling, rock-splitting, arranging rock, loading and by being compared with the permitted level on the noise and ground vibration fixed at the spot. To the results, it is identified that the influence to the noise has to be considered, even if the rock-splitting method is applied as an excavation method to lower a ground vibration by the classification on blasting method of the ministry of land, transport and marine affairs.