• Title/Summary/Keyword: ground improvement

Search Result 1,462, Processing Time 0.025 seconds

Effects of Ground Improvement Depending on the Type of Soil by Compaction Grouting System (토질의 종류에 따른 CGS공법의 지반개량효과에 관한 연구)

  • Chun, Byung-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.211-220
    • /
    • 2002
  • CGS(Compaction Grouting System) is widely used in reinforcement of structural foundation and ground improvement in soft ground. But the effects of ground improvement depending on the type of soil must be studied in order to adopt in various soils (granular soil and cohesive soil). In this study, characteristics of ground improvement (the increase of N value, increase in unit weight, vertical displacement on the ground surface) by CGS method was compared through two cases that were performed in granular and cohesive soil. The results show that the closer to the grout hole, the more increase in N value and this trend appear distinctly in granular soil. Unit weight of ground increase largely near by the grout hole and decrease in far from it independently of the soil type. The vertical displacement on the ground surface appeared in smaller area in case of granular soil than cohesive soil.

Characteristics of Ground Improvement by Compaction Grouting System in Filled Ground (매립토층에서 CGS에 의한 지반개량특성에 관한 연구)

  • 천병식;여유현;정영교;정완균;정의원;김우종
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.425-432
    • /
    • 2001
  • Compaction Grouting System, the method which makes ground compact by injection of low slump mortar, Is widely used for reinforcement of soft ground, restoration of structures happened differential settlement, underpinning and restoration of damaged dam core. The quantitive analysis of ground improvement for this method has not performed yet. So, design parameters about thls method must be studied through performance of CGS in various types of soil to make CGS adaptable widely. In this study PBT, SPT and field density test were performed for analysis of the characteristics of ground improvement and pressuremeter and inclinometer were installed for analysis of the characteristics of compaction in adjacent ground. In this paper, denoted much effects for filled ground that increasing of the bearing capacity, confirming the displacement of adjacent ground and the effective radius of injection.

  • PDF

A study on the variety of strength about soft ground improvement material according to Mixed soil (혼합대상 토질에 따른 지반개량재의 강도 변화에 관한 연구)

  • Lee, Kwang-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1023-1030
    • /
    • 2005
  • This study is an experiment paper about the ground improvement material which using the waste residual(slag and paper fly ash) by fire. we are research to concern according to the soil to mix the ground improvement material at show strength effectiveness. Also, we can expect a long time strength increase effectiveness as reduce the dryness contraction. They are distinguished to the clay of the reclamation ground and silty sand soil. We examined around an uniaxial compress test and scanning electron microscopy. The uniaxial stress increases according to the increase of the mixed ratio of ground improvement material and the water contents have been reduced the strength value. A clay's improvement effectiveness is big but in the silty sand soil to express small effectiveness. A ground improvement material mixing of the quantity to write can not expect the effect of Ettringite.

  • PDF

Evaluation to the effect of ground improvement at Inchon International Airport area using the Flat Dilatometer (Dilatometer를 이용한 인천국제공항 지역의 지반개량효과 평가)

  • 김종국;김학중;전창대
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.309-316
    • /
    • 2000
  • When highly compressible, clayey soil layers lies at a limited depth and large consolidtion settlements are expected as the result of construction, precompression of soil may be used to minimize postconstruction settlement. In this study, we tried to find the possibility about the effect of ground improvement using flat dilatometer at the Inchon International Airport where preloading was installed. Field and laboratory tests were performed for soft ground before and after preloading in order to check the effectiveness of the soft ground improvement and compared with the test results of dilatometer which obtained before and after preloading at the same location Field tests such as flat dilatometer, vane, CPTu tests were performed before and after preloading and undisturbed samples are obtained to carry out laboratory tests. As comparing results, after preloading, unit weight, effective stress, undrained shear strength were increased and we can also check the decrease of consolidation late caused of decrease of void ratio. Furthermore, it is assumed that the possibility on the effect of ground improvement by using the flat dilatometer

  • PDF

Effects of Deep Mixed Method Construction Within the Soft ground (연약지반의 심층혼합처리공법의 시공효과)

  • ;;Li Guang Fan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.1 no.1
    • /
    • pp.160-168
    • /
    • 2001
  • This study aims at the development of computer program for the deformation analysis of soft ground, and using this computer program, study the constraint effect of deformation heaving, lateral displacement of the soft ground reinforced with improvement of soft ground up to hard strata, under intact state(natural). The following results are obtained. 1. Improvement of soft ground to the hard strata works well against the settlement of neighboring ground. 2. the larger the rigidity or width of improvement of layer to hard strata is, the less settlement occurs. 3. Improvement of soft ground to the hard strata is of no use.

  • PDF

Improvement of waste landfill by dynamic compaction method (동다짐공법에 의한 쓰레기매립지반의 개량특성 분석)

  • 정하익;곽수정
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.404-410
    • /
    • 2002
  • Dynamic compaction is an efficient ground improvement technique for loose soils and waste landfill. The improvement is obtained by controlled high energy tamping and its effects vary with the soil properties and energy input. This study demonstrated the application of dynamic compaction method for the improvement of waste landfill in construction site. Various tests and measurements such as standard penetration test, bore hole loading test, crater settlement, ground settlement, pore water pressure were peformed during dynamic compaction field test. From the field test results, the efficiency of dynamic compaction method for the improvement of waste landfill was proved.

  • PDF

An Analytical Study on the Determination of the Lowest Improvement Depth of Deep Mixing Method (심층혼합공법의 최저 개량 심도 결정에 관한 해석적 연구)

  • Park, Choon-Sik;Song, Ji-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.35-44
    • /
    • 2020
  • Design techniques for the deep mixing method, one of the soft ground improvement methods, include two ways to interpret the ground as composite ground and pile ground. However, since comparative studies on these two approaches are insufficient, it is difficult to clearly define the analysis criteria in the design. In this study, two-dimensional and three-dimensional analyses have been performed with different conditions. The three conditions, the embankment height, depth of soft ground, and replacement ratio of reinforcement zones were varied and the analysis was performed on the basis of the assumption of composite ground and pile ground for each condition. As a result, the minimum depth of improvement in the two-dimensional analysis was deeper by 6.85~9.08% than in the three-dimensional analysis. The pile ground analysis showed that the depth of improvement was deeper by 12.22~14.45% than the composite ground analysis. Based on these results, it is concluded that for more accurate design, three-dimensional analysis should be performed rather than two-dimensional analysis. also, it is judged that necessary to analyze the ground as composite ground for economical design, and as the pile ground analysis for stable design.

Study on Improvement Plan of System through Analysis of Ground Sink Accidents - Focused on the management of underground facilities and their surrounding ground - (지반함몰 사고 분석을 통한 제도 개선안 연구 - 지하시설물 및 주변지반 관리 중심으로 -)

  • Kim, Dong-jin;Lee, Jong-keun;Kim, Hong-kyoon;No, Tae-kil
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.3 no.1
    • /
    • pp.18-24
    • /
    • 2020
  • The purpose of this study is to propose a system improvement plan to prevent ground sinking accidents. To do this, follow the procedure below. First, it defines terms that are used interchangeably, such as ground subsidence and ground depression. Second, analysis of the current status and cause of ground sink, and the analysis of the correlation between rainfall and ground sink causes, derives priority management causes. Third, we propose a system improvement plan for the cause of priority management. As a result, damage to underground pipes and inadequate underground works were identified as the cause of priority management, and two system improvement plans to manage them were proposed. The results of this study can be used as basic data for improving the system for more effective prevention of underground sink in the future.

RELEVANCE OF BAND DRAIN QUALITY TO EFFECTIVENESS OF GROUND IMPROVEMENT (밴드 드레인의 품질과 연약지반개량효과와의 관련)

  • 김상규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1995.10a
    • /
    • pp.1.3-20
    • /
    • 1995
  • The use of band drains for ground improvement has been increased throughout the world during the past 15 years. Apart from other ground improvement techniques, the quality of band drains affects greatly the well resistance of drains, discharge capacity and clogginf tests for four drains selected are carried out and quality is examined.

  • PDF

Analysis of Ground Improvement Effect of Low Vibration Sand Compaction Pile Method (저진동 모래다짐말뚝(LVSCP)의 지반개량효과 분석)

  • Kim, Jong-Kook;Cha, Jun-Tae;Lee, Jae-Chang;Chae, Young-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1234-1242
    • /
    • 2010
  • In this study, the effect of noise and vibration, and influence of ground improvement are evaluated and its application is analyzed through the example of SCP designed at ground improvement in Song-Do international city. consequently, it showes even comfortable result that it is about 5.0m of inner space, when the LVSCP method is applied, rather than that it is about 30m of inner space when the existing SCP is applied in vibration control standards 2.0mm/sec. In the noise, now that the many differences according to environmental factors like other equipment noise, limited space and so on at the time of the construction by LVSCP method are coming out, so we think that appro itate measures are needed according to surroundings. By the way, when it comes to the estimation of the ground improvement work before and after an improvement of LVSCP method, its result shows that it is satisfacttion to all the standards of compaction control in dregded and reclaimed ground and sedimentary clay layer.

  • PDF