• Title/Summary/Keyword: ground behavior

검색결과 1,864건 처리시간 0.023초

터널 굴착에 따른 지반 및 인접구조물의 3차원 거동 (3-D Behavior of Adjacent Structures in Tunnelling Induced Ground Movements)

  • 김찬국;황의석;김학문
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.663-670
    • /
    • 2003
  • Urban tunnelling need to consider not only the stability of tunnel itself but also the ground movement regarding adjacent structures. This paper present 3-D behavior of adjacent structures due to tunnelling induced ground movements by means of field measuring data and nonlinear FEM tunnel analysis. The results of the analytical methods from Mohr-Coulomb model are compared with the site measurement data obtained during the twin tunnel construction. It was found that the location and stiffness of the structure influence greatly the shape and pattern of settlement trough. The settlement trough for Greenfield condition was different from the trough for existing adjacent structures. Therefore the load and stiffness of adjacent structures should be taken into account for the stability analysis of the structures.

  • PDF

지반-구조물 동적 상호작용에 의한 Rocking현상과 그에 따른 지하 중공구조물의 부상거동 (Ground-Structure Seismic Interaction-Induced Rocking Behavior and the Uplift Behavior of Underground Hollow Structure)

  • 강기천
    • 대한토목학회논문집
    • /
    • 제32권3C호
    • /
    • pp.85-94
    • /
    • 2012
  • 본 논문은 액상화 지반에서의 지반-지하 중공구조물 상호작용에 따른 구조물의 rocking현상을 조사하기 위해서 수행한 원심모형실험에 관하여 서술하고 있다. 지진이 발생하였을 때 지반이 강한 진동에 노출되면 상대밀도가 낮은 느슨한 모래지반에서는 액상화가 발생하며, 액상화된 지반보다 작은 단위중량을 가진 지하 중공구조물은 부상한다. 지하 중공구조물이 부상하는 동안에 구조물의 동적 거동과 구조물의 부상량에 대한 원지반의 영향을 평가하기 위하여 원지반의 상대밀도를 다르게 모델지반을 제작하였고, 아크릴 박스를 이용하여 트랜치를 제작하여 모형실험을 수행하였다. 실험결과, 액상화된 원지반의 측방유동 및 주변지반의 전단변형에 의해 야기되는 지하 중공구조물의 rocking현상이 지하 중공구조물의 부상량의 규모에 크게 기여하는 것으로 나타났다.

연약지반 계측 정보관리 및 자동분석.재설계 시스템 개발 (A Development of Automated Monitoring Technique and Feedback Design System for Embankment on Soft Ground)

  • 한영철;윤동덕;김주용
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.103-108
    • /
    • 1999
  • This paper describes development of a new automated real-time system which preforms measurement data reduction and management, geotechnical backanalysis, and feedback design for embankment construction on soft ground. Such a system can be an effective, useful and economical tool for managing a large site development on soft ground. The system consists of data base system to characterize soil properties and identify instrumentation, analysis system for ground behavior and stability coupled with automatic monitoring system, and feedback design system which is a new technique to reflect the analysis of measured ground behavior against original design.

  • PDF

上部 構造와 下部 壓密地盤 間 상호작용 문제의 정식화에 대한 연구 (A Study on the Formulation of the Interaction Problem between Upper Structure and the Ground under Consolidation)

  • 이외득
    • 한국해양공학회지
    • /
    • 제13권1호통권31호
    • /
    • pp.51-61
    • /
    • 1999
  • When a structure is built on the ground under consolidation, the instant corresponding contact pressure which the upper structure exerts on the ground is established. But, as the consolidation of the ground proceeds, the contact pressure is changed because of the flexural rigidity of the upper structure. This varied contact pressure exerts influence on the consolidation behavior of the ground. And, this varied consolidation behavior exerts on the contact pressure in retum. This kind of interaction between the upper struture and the olwer ground under consolidation contimues till all the consolidation process in finished. So this problem cannot be defined as a linear problem. In this paper an approximation method which can analyse this non-linear interaction problem is proposed by the FEM.

  • PDF

DCM 공법으로 개량된 연약지반의 측방유동을 받는 교대 말뚝기초의 거동 분석에 관한 연구 (A Study on the Behavior of Piled Abutment Subjected to Lateral Soil Movement of Soft Ground Improved by Deep Cement Mixing Method)

  • 최연호;강경호
    • 지질공학
    • /
    • 제30권2호
    • /
    • pp.131-145
    • /
    • 2020
  • 연약지반 상에 도로성토를 시공할 경우 연약지반에는 편재하중이 작용하게 되어 연약지반의 측방유동이나 활동파괴가 종종 발생하게 된다. 본 연구에서는 연약지반에 설치되는 교대말둑기초의 안정성과 말뚝의 거동특성을 파악하는 것이다. 지반의 측방유동으로 인하여 말뚝에 작용하는 수평하중에 대한 기존 연구자들의 연구내용을 파악하고 유한요소해석을 수행하여 교대말뚝기초의 거동특성과 보강효과를 확인하여 측방유동을 받는 교대말뚝기초의 거동을 연구하였다. 압밀도 분석 결과, 압밀 단계에 따라 연약지반 강도증가율에 의해 연약지반의 강도정수인 점착력은 약 1.1~1.8배 증가하였다. 측방유동 검토 결과, 허용수평변위 기준은 3.8 cm를 사용하는 것이 경제적으로나 시공적인 면에서 타당한 것으로 판단되나, 구조물의 중요도 및 지반의 불확실성 등을 고려하여 시공 시 계측을 실시하고 그에 따른 측방유동에 대한 철저한 안전관리가 이루어져야 할 것으로 판단된다.

진동대 시험을 이용한 콘크리트 댐의 동적거동 특성 연구 (A Study on the Dynamic Behavior of Concrete Dam by Shaking Table Tests)

  • 황성춘
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.806-812
    • /
    • 2005
  • This paper adresses the shaking table tests with 1/100 scaled model followed similitude law for OOdam main designing section to understand nonlinear behavior characteristics of concrete dam body by ground motion. As earthquake wave, Hachinohe and El Centre waves were used and acceleration and displacements are measured to analyze behaviors of dam body. For maximum ground acceleration range $(0.3\~0.9 g)$, the results showed linear behavior regardless of maximum 9round acceleration and secured safety of structure. To analyze the behavior of dam after tension cracking, 3 cm-notch was placed at the critical section of over-flowing section. As results of applying Hachinohe wave(0.8 g), Even though tension cracks were formed at over-flowing section by Hachinohe wave(0.8 g), it showed that the dam is stable for supporting upper stream Part of water tank of dam.

지반굴착 해석모델에 따른 변위거동에 관한 연구 (A Study on the Displacement Behavior according to the Analysis Model of Ground Excavation)

  • 정지승;신영완;김만화;국윤모;정규경;김필수;이상환
    • 한국지반환경공학회 논문집
    • /
    • 제19권4호
    • /
    • pp.27-32
    • /
    • 2018
  • 제한된 토지의 효율적인 활용을 위해 과거로부터 지하공간 개발에 따라 수많은 지반굴착 공사가 이루어져 왔다. 지반굴착은 굴착면 주변지반의 응력변화와 변위를 수반함에 따라 굴착면의 안정성에 영향을 미치게 되어 지반거동에 대한 영향을 예측하는 것이 매우 중요한 문제이다. 이러한 영향 예측을 위한 방법으로 수치해석방법이 주로 이용되며, 최근 컴퓨터 성능 향상과 더불어 수치해석 프로그램의 발달로 매우 복잡한 문제도 적용이 가능해졌다. 그러나 일부 특수해석을 제외하고 대부분 해석모델을 산정 및 적용이 간편한 Mohr-Coulomb 해석모델을 적용함에 따라 굴착면 바닥부에서 실제보다 큰 변위가 발생하는 것으로 예측되어 필요 이상의 보강이 이루어지는 문제점이 발생한다. 본 연구에서는 지반굴착 과정을 모사하여 수치해석을 수행하였으며, 해석모델로 Mohr-Coulomb, Modified Mohr-Coulomb, Duncan-Chang, Hardening Soil 해석모델을 적용하여 그 결과를 비교분석하였다. 본 연구는 수치해석을 통한 지반굴착 문제해결 시 다양한 지반굴착 조건별로 적합한 해석모델 선정을 위한 기초자료로 활용될 것으로 기대된다.

확공을 이용한 지압형 앵커의 인발거동 특성 연구 (The Study of Pullout-Behavior Characteristics of The Ground Anchor Using Expanded Hole)

  • 민경남;정찬묵;정대호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.1502-1508
    • /
    • 2011
  • Ground anchor expands the hollow wall of settled part and has the structure which resists the designed tensile load by the bearing pressure generated by the wedge of the anchor body pressing in the expanded part. Such ground anchor has been recognized for stability and economicality since 1960s in technologically advanced nations such as Japan and Europe, and in 1970s, the Japan Society of Soil Engineering has established and announced the anchor concept map. The ground anchor introduced in Korea, however, has the structural problem where the tensile strength is comes only from the ground frictional force due to expansion of the wedge body. In an interval where the ground strength is locally reduced due to fault, discontinuation or such, this is pointed out as a critical weakness where the anchor body of around 1.0m must resist the tensile load. Also, in the installation of concrete block, the concentrated stress of concrete block constructed on the uneven rock surface causes damage, and many such issues in the anchor head have been reported. Thus, in this study, by using the expanded bit for precise expansion of settled part, the ground anchor system was completed so that the bearing pressure of ground anchor can be expressed as much as possible, and the bearing plate was inserted into the ground to resolve the existing issues of concrete block. Through numerical analysis and pullout test executed for verification of site applicability, the pullout-behavior characteristics of anchor was analyzed.

  • PDF

Impact of target spectra variance of selected ground motions on seismic response of structures

  • Xu, Liuyun;Zhou, Zhiguang
    • Earthquakes and Structures
    • /
    • 제23권2호
    • /
    • pp.115-128
    • /
    • 2022
  • One common method to select input ground motions to predict dynamic behavior of structures subjected to seismic excitation requires spectral acceleration (Sa) match target mean response spectrum. However, dispersion of ground motions, which explicitly affects the structural response, is rarely discussed in this method. Generally, selecting ground motions matching target mean and variance has been utilized as an appropriate method to predict reliable seismic response. The goal of this paper is to investigate the impact of target spectra variance of ground motions on structural seismic response. Two sets of ground motions with different target variances (zero variance and minimum variance larger than inherent variance of the target spectrum) are selected as input to two different structures. Structural responses at different heights are compared, in terms of peak, mean and dispersion. Results show that increase of target spectra variance tends to increase peak floor acceleration, peak deformation and dispersions of response of interest remarkably. To short-period structures, dispersion increase ratios of seismic response are close to that of Sa of input ground motions at the first period. To long-period structures, dispersions of floor acceleration and floor response spectra increase more significantly at the bottom, while dispersion increase ratios of IDR and deformation are close to that of Sa of input ground motions at the first period. This study could further provide useful information on selecting appropriate ground motion to predict seismic behavior of different types of structures.

Numerical study on stability and deformation of retaining wall according to groundwater drawdown

  • Hyunsung Lim;Jongjeon Park;Jaehong Kim;Junyoung Ko
    • Geomechanics and Engineering
    • /
    • 제33권2호
    • /
    • pp.195-202
    • /
    • 2023
  • In this study, the ground settlement in backside of retaining wall and the behavior of the retaining wall were analyzed according to the method of groundwater drawdown due to excavation by using two-dimensional(2D) finite element analysis. Numerical analysis was performed by applying 1) fixed groundwater level, 2) constant groundwater drawdown, and 3) transient groundwater drawdown. In addition, the behavior of the retaining wall according to the initial groundwater level, ground conditions, and surcharge pressure in backside of retaining wall was evaluated. Based on the numerical analysis results, it was confirmed that when the groundwater level is at 0.1H from the ground surface (H: Excavation soil height), the wall displacement and ground settlement are not affected by the method of groundwater drawdown, regardless of soil conditions (dense or loose) and surcharge pressure. On the other hand, when the groundwater level is at 0.5H from the ground surface, the method of groundwater drawdown was found to have a significant effect on wall displacement and ground settlement. In this case, the difference in ground settlement presents by up to 4 times depending on the method of groundwater drawdown, and the surcharge load could increase the ground settlement by up to 1.5 times.