• Title/Summary/Keyword: gripper

Search Result 202, Processing Time 0.027 seconds

Development of A Automatic Transplanter for Bedding Plants Between Tray (육묘상자간 자동 육묘 이식 시작기 개발)

  • 류관희;한재성;류찬석;김기영
    • Journal of Biosystems Engineering
    • /
    • v.25 no.1
    • /
    • pp.19-24
    • /
    • 2000
  • This study was carried out to develop gripper which to adaptive variable tray and to develop automatic transplanting system for seedling-production system between tray. This system consisted of five set of gripper and end-effector, a planting-width control unit, a tray transfer unit, and gripper moving device which move gripper between nursing tray and growing tray. This system used push-out rod to grasp plant instead of pull-out end -effector. Several types of fingers, which physically grip seedlings, were also developed and tested to ensure reliable transplanting operation of the gripper. The transplanting system detaches seedlings from a tray with push-o0ut rods, which were installed under the tray transfer unit. The performance of the transplanting system was evaluated by successive transplanting experiments. Using the best type of finger , the transplanting system produced 94.6% of transplanting success rate.

  • PDF

Study on the Design of a Novel Adaptive Gripper (적응형 그리퍼 설계 연구)

  • Kim, Gi Sung;Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.325-335
    • /
    • 2019
  • In this paper, a novel adaptive gripper with underactuation is presented, which can change its configuration to parallel or power grip mode according to object shapes. Differently from the commercial adaptive gripper by RobotiQ, the proposed gripper includes an actual parallelogram inside a five-bar mechanism, which allows the free selection of actuator locations and can reduce actuation torques effectively. The forward and inverse kinematics for two grip modes and statics analysis have been analyzed. From the comparative design, the proposed gripper has about 20% smaller size, 3.7% larger stroke, and 30.5% smaller average actuation torque than the commercial one.

Slip Detection of Robot Gripper with Flexible Tactile Sensor (유연 촉각 센서를 이용한 로봇 그리퍼의 미끄러짐 감지)

  • Seo, Ji Won;Lee, Ju Kyoung;Lee, Suk;Lee, Kyung Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.2
    • /
    • pp.157-164
    • /
    • 2014
  • In this paper, we design a gripping force control system using tactile sensor to prevent slip when gripper tries to grasp and lift an object. We use a flexible tactile sensor for measuring uniplanar pressure on gripper's finger and develop an algorithm to detect the onset of slip using the sensor output. We also use a flexible pressure sensor to measure the normal force. In addition, various signal processing techniques are used to reduce noise included in the sensor output. A 3-finger gripper is used to grasp and lift up a cylindrical object. The tactile sensor is attached on one of fingers, and sends output signals to detect slip. Whenever the sensor signal is similar to the slip pattern, gripper force is increased. In conclusion, this research shows that slip can be detected using the tactile sensor and we can control gripping force to eliminate slip between gripper and object.

Strength and Stiffness Analysis for a Flexible Gripper with Parallel Pinching and Compliant Grasping Capabilities (순응형 파지와 정밀한 집기가 가능한 유연한 그리퍼의 강도 및 강성 분석)

  • Lee, Deok Won;Jeon, Hyeong Seok;Jeong, Young Jun;Kim, Yong Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.817-825
    • /
    • 2016
  • In this paper, we introduce a flexible gripper that we have engineered to precisely pinch in parallel and compliantly grasp objects. As found in most conventional industrial grippers, the parallel pinching property is essential for precise manipulation. On the other hand, the grippers with a flexible structure are more adept at grasping objects with arbitrary shapes and softness. To achieve these disparate properties, we introduce a flexible gripper mechanism composed of multiple flexible beam structures. Utilizing these beam structures, the proposed gripper is able to grasp arbitrarily shaped objects. Additionally, a unique combination of flexible beams enables the gripper to pinch objects using the parallel fingertips for enhanced precision. A detailed description of the proposed mechanism is provided, and an analysis of the strength and stiffness of the fingertip and finger body is presented. The Results section compares the theoretical and experimental analyses and verifies the properties and performance of the proposed gripper.

A Design and Manufacturing of Two Types of Micro-grippers using Piezoelectric Actuators for the Micromanipulation (미세 조작을 위한 압전 구동 집게의 설계 및 제작)

  • 박종규;문원규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.246-250
    • /
    • 2003
  • In this study, two new types of micro-grippers in which micro-fingers are actuated by piezoelectric multi-layer benders and stacks are introduced for the manipulation of micrometer-sized objects. First, we constructed a 3-chopstick-mechanism tungsten gripper, which is composed of three chopsticks: two are designed to grip micro-objects, and tile third is used to help grasp and release the objects through overcoming especially electrostatic force among some surface effects including electrostatic, van der Waals forces and surface tension. Second, a 2-chopstick-mechanism silicon micro-gripper that uses an integrated force sensor to control the gripping force was developed. The micro-gripper is composed of a piezoelectric multilayer bender for actuating the gripper fingers, silicon fingertips fabricated by use of silicon-based micromachining, and supplementary supports. The micro-gripper is referred to as a hybrid-type micro-gripper because it is composed of two main components; micro-fingertips fabricated using micromachining technology to integrate a very sensitive force sensor for measuring the gripping force, and piezoelectric gripper finger actuators that are capable of large gripping forces and moving strokes. The gripping force signal was found to have a sensitivity of 667 N/V. To the design of each of components of both of the grippers. a systematic design approach was applied, which made it possible to establish the functional requirements and design parameters of the micro-grippers. The micro-grippers were installed on a manual manipulator to assess its performance in tasks such as moving micro-objects from one position to a desired position. The experiment showed that the micro-grippers function effectively.

  • PDF

Development of Offshore Construction ROV System applying Pneumatic Gripper (공압 gripper를 적용한 해양 건설 ROV 시스템 개발)

  • Park, Jihyun;Hwang, Yoseop
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1697-1705
    • /
    • 2022
  • The safety of marine construction workers and marine pollution problems are occurring due to large-scale offshore construction. In particular, underwater construction work in the sea has a higher risk than other work, so it is necessary to apply an unmanned alternative system that considers the safety of the workers. In this paper, the ROV system for offshore construction has been developed for underwater unmanned work. A monitoring system was developed for position control through the control of underwater propellants, pneumatic gripper, and monitoring of underwater work. As a result of the performance evaluation, the underwater movement speed of the ROV was evaluated to be 0.89 m/s, and it was confirmed that the maximum load of the pneumatic gripper was 80 kg. In addition, the network bandwidth required for underwater ROV control and underwater video streaming was evaluated to be more than 300Mbps, wired communication at 92.7 ~ 95.0Mbit/s at 205m, and wireless communication at 78.3 ~ 84.8Mbit/s.

PID Force Control of a miniature robot Gripper (PID 제어기에 의한 소형 로봇용 그리퍼의 힘 제어)

  • 홍동표
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.44-49
    • /
    • 1999
  • This paper is concerned with the theoretical and experimental study on the force conrtrol of a miniature robotic gripper. The gripper is an uniform flexible cantilever equipped with a distributed set of compact force sensor. As an actuator piezoelectric acturator, piezoelectric acturator is fixed with cupper plate at which the beam is clamped. The mathematical model of the assembled electro-mechaincal system is developed. The force sensor is described by a set of concentrated mass-spring system. The formulated equations of motion are applied to he study of a control problem where the gripper is commanded to grip an object The usefulness of the PID control technique is verified by experiment.

  • PDF

Design of an Adaptive Gripper with Single Linear Actuator (단일 직선 구동형 적응형 그리퍼 설계)

  • Kim, Giseong;Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.313-321
    • /
    • 2020
  • In this paper, two types of linear actuation methods for the previously proposed adaptive gripper are presented, which includes actual parallelogram inside a five-bar mechanism and has the advantages of smaller actuation torque and larger stroke over the commercial adaptive gripper by RobotiQ. The forward/inverse kinematics and statics analyses for two types of linear actuations are derived. From the inverse kinematics and statics analyses, linear actuation type I is selected and the gripper prototype is designed.

Fabrication and Sensorization of a Superelastic Alloy Microrobot Gripper using Piezoelectric Polymer Sensors (초탄성 마이크로 그리퍼의 제작 및 압전폴리머 센서를 이용한 센서화)

  • 김덕호;김병규;강현재;김상민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.251-255
    • /
    • 2003
  • This paper presents the design, fabrication, and calibration of a piezoelectric polymer-based sensorized microgripper. Electro discharge machining technology is employed to fabricate super-elastic alloy based micro gripper. It is tested to present improvement of mechanical performance. For integration of force sensor on the micro gripper, the sensor design based on the piezoelectric polymer PVDF film and fabrication process are presented. The calibration and performance test of force sensor integrated micro gripper are experimentally carried out. The force sensor integrated micro gripper is applied to perform fine alignment tasks of micro opto-electrical components. It successfully supplies force feedback to the operator through the haptic device and plays a main role in preventing damage of assembly parts by adjusting the teaching command.

  • PDF