• Title/Summary/Keyword: grinding method

Search Result 511, Processing Time 0.026 seconds

The Geometric Error Analysis by Various Various Inputs In Surface Grinding (평면연삭에서 다변수 입력에 의한 형상오차 해석)

  • 김강석;홍순익;송지복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.868-872
    • /
    • 1997
  • The thermal deformation of a workpiece during grinding is one of the most important factors that affect a flatness of a grinding surface. The heat generated in one-pass surface grinding causes the convex deformation of a workpiece. Therefore, the ground surface represents a conacve profile. In the analysis a simple model of the temperature distribution,based on the result of a finite element method, is applied. The analyzed results are compared with experimental results in surface grinding. The main results obtained are as follows; (1) The temperature distibution of a workpiece by FEM is comparatively in good agreement with the experimental results. (2) The bending moment by generated heat cause a convex deformation of the workpiece and it reads to a concave profile of the grinding surface.

  • PDF

Control of Ground Surface Using Light Scattering (광산란법을 이용한 연삭표면 제어)

  • 홍민성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.293-298
    • /
    • 1998
  • In surface grinding, the conditions of the grinding wheel give a significant effect on the ground workpieces comparing with other metal removal processes. In this paper, to assist the development, a non-contacting optical method is introduced to make in-process measurements of scattering intensities from laser beam during surface grinding processes. This show indications of changes in surface texture of wheel working surfaces. Also, in order to determine the dressing time monitoring method of grinding wheel in surface grinding, a three-dimensional computer simulation of the grinding operation has been attempted based on the contact mechanism and surface-shaping system between the grinding wheel and the workpiece. The optical dressing time is determined based on the amount of the grain wear and work surface roughness.

  • PDF

A Study on the Environment-Friendly Grinding Technology through Minimizing Coolant (냉각액 최소화를 통한 환경 친화적 연삭 가공기술 연구)

  • 최헌종;이석우;김대중;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.796-799
    • /
    • 2000
  • The concern of environmental problems by using coolant required the recycling technologies of used coolant and development of environmental-firiendly coolant Some methods have been developing. Those are the dry grinding with compressed cold air and grinding with misted coolant. The farmer is effective in the cooling effect, but has not the performance of lubrication. Otherwise, the latter can satisfy both of them and also decrease the environmental pollution. This paper tried to analyze the cooling effect and surface integral of coolant, compressed cold air, mist through measuring the temperature of grind point and grinding force. Especially, the grinding method with misted coolant according to parameters was done. So, the finding method with misted coolant proved to be effective as one of methods to decrease the environmental pollution.

  • PDF

Simulation of Ground Surface by In-process Measurement (인프로세스 측정을 통한 연삭 시뮬레이션)

  • Hong, Min-Sung;Choi, Woo-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.160-165
    • /
    • 1999
  • In surface grinding, the conditions of the grinding wheel give a significant effect on the ground workpieces comparing with other metal removal provesses. In this paper, to assist the development, a non-contacting optical method by the laser beam is introduced. The in-process measurement of scattering intensities has been made during surface grinding processes and the surface textures of wheel working surfaces are captured. Also, in order to determine the dressing time monitoring method of a grinding wheel, a three-dimensional computer simulation of the grinding operation has been attempted based on the contact mechanism and the surface-shaping system between the grinding wheel and the workpiece. The optimal dressing time is determined by the amount of the grain wear and work surface roughness.

  • PDF

Comparison of 3 Typical methods for ultra-precision grinding (가공방식에 따른 초정밀 연삭의 비교)

  • Park, Soon-Sub;Lee, Ki-Young;Kim, Hyoung-Mo;Lee, Jae-Seol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.9-15
    • /
    • 2007
  • Three methods for grinding: cross grinding, slanted tool axis grinding and parallel grinding, were carried out to study the machinability of tungsten carbide mold for glass formed aspherics lens. In our research, the optimum grinding conditions were investigated in terms of feed-rate, relative velocity of wheel and work piece, tool marks and surface roughness. It is shown that cross grinding are most effective in removal ratio but poor in surface roughness. In addition, tool marks of each method were differentiated on direction and shape.

  • PDF

Characteristic of Mirror Surface ELID Grinding of Large Scale Diametrical Silicon Wafer with Rotary Type Grinding Machine (로타리 연삭에 의한 대직경 Si-wafer의 ELID 경면 연삭특성)

  • 박창수;김원일;왕덕현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.58-64
    • /
    • 2002
  • Mirror surface finish of Si-wafers has been achieved by rotary in-feed machining with cup-type wheels in ELID grinding. But the diameter of the workpiece is limited with the diameter of the grinding wheel in the in-feed machining method. In this study, some finding experiments by the rotary surface grinding machine with straight type wheels were conducted, by which the possible grinding area of the workpiece is independent of the diameter of the wheels. For the purpose of investigating the grinding characteristics of large scale diametrical silicon wafer, grinding conditions such as rotation speed of grinding wheels and revolution of workpieces are varied, and grinding machine used in this experiment is rotary type surface grinding m/c equipment with an ELID unit. The surface ground using the SD8000 wheels showed that mirror like surface roughness can be attained near 2~6 nm in Ra.

Mirror Surface ELID Grinding of Large Scale Diametral Silicon Wafer with Straight Type Wheel (스트레이트 숫돌에 의한 대직경 Si-wafer의 ELID 경면연삭)

  • 박창수;김경년;김원일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.946-949
    • /
    • 2001
  • Mirror surface finish of Si-wafers has been achieved by rotary in-feed machining with cup-type wheels in ELID grinding. But the diameter of the workpiece is limited with the diameter of the grinding wheel in the in-feed machining method. In this study, some grinding experiments by the rotary surface grinding machine with straight type wheels were conducted, by which the possible grinding area of the workpiece is independent of the diameter of the wheels. For the purpose of investigating the grinding characteristics of large scale diametral silicon wafer, grinding conditions such as rotation speed of grinding wheels and revolution of workpiece are varied, and grinding machine used in this experiment is rotary type surface grinding m/c equipped with an ELID unit. The surface ground using the SD8000 wheels showed that mirror like surface roughness can be attained near 2~6nm in Ra.

  • PDF

Temperature Distribution of Tungsten Carbide Alloy Steel(WC-Co) for Surface Grinding (초경합금재의 평명연삭에 의한 온도분포)

  • Nam, Joon Woo;Kim, Won Il;Heo, Seoung Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.178-188
    • /
    • 1995
  • A study on the temperature distribution of tungsten carbide alloy steel(WC-Co) in surface grinding was conducted to improve the surface finish and to find optimum grinding conditions which would lead to efficient grinding operation by theoretical finite element method analysis and experimental test of workpiece under various conditions. Based on the comparixion of test results and FEM analysis data, it is concluded that the FEM computer simulation of heat transfer is useful in predicting the temperature distribution of test material that the increase of temperature is more infuleneced by the grinding depth than the grinding speed. And that the grinding energy flux of dey grinding is 4 to 6 time greater than wet grinding regardless of grinding speed and finally that the heat transfer does not take place in depth deeper than 3mm from the grinding surface.

  • PDF

A Theory of Nonlinear Grinding Chatter Due to Loss of Contact between Grinding Wheel and Workpiece (接觸 離脫 現象 에 의한 非線型 硏削 채터의 解析 理論)

  • 김옥현;김성청;임영호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.706-713
    • /
    • 1985
  • It is clear that when the amplitude of grinding chatter increases enough the contact between grinding wheel and workpiece cannot be sustained and the loss of contact occurs during a period of grinding chatter. In this paper the behavior of nonlinear grinding chatter due to the loss of contact has been studied. A nonlinear grinding chatter loop is developed where the loss of contact is considered as a nonlinear element of asymmetrical gain. The analysis is carried out in the time domain by numerical simulation and also in the complex domain by use of describing function method. The results show that two typical patterns of nonlinear grinding chatter can originate from the nonlinearity. One is an irregular chatter frequency at starting stage decreases to the natural frequency of grinding structure while the chatter amplitude increases and decreases repeatedly. The other is a limit cycle chatter of which the amplitude and frequency converge to constant and remain. This nonlinear behavior of grinding chatter has been well analyzed by the describing function method and confirmed by the numerical simulation.