• 제목/요약/키워드: grid resolution

검색결과 465건 처리시간 0.031초

수리동역학적 모의를 위한 적정 격자해상도 산정방법 (Evaluation of Optimal Grid Resolution for Hydrodynamic Proper Simulation)

  • 안정민;박인혁;류시완;허영택
    • 대한공간정보학회지
    • /
    • 제20권1호
    • /
    • pp.109-116
    • /
    • 2012
  • 본 연구에서는 CCHE2D와 EFDC모형을 이용한 모의를 통하여 격자의 횡단해상도에 따른 물리적 지형의 재현성과 모의결과에 대한 영향을 검토하고자 하였다. 낙동강 금호강 유입구간을 대상으로 2006년 강우사상에 대한 부정류모의를 통하여 면적고도곡선과 대상구간내 수위관측소 지점에서의 실측치와 모의치간의 비교를 통하여 구성격자망의 적정성 및 모의결과에 대한 영향을 각각 검토하였다. 일반적으로 격자 해상도의 증가는 계산시간의 증가를 야기하므로 수행 내용과 목적, 계산의 효율성 측면에서 적절한 격자해상도의 선택이 필요하다. 정밀한 모의를 위해서는 고해상도 격자를 이용한 모의를 수행해야 하나, 빠른 의사결정이 요구되는 홍수기와 같이 모형수행의 효율성을 고려해야 하는 경우에 적용 가능한 물리적 지형의 재현성과 결과에 대한 신뢰성을 보장할 수 있는 적정 격자 해상도가 존재함을 확인할 수 있었다.

지표격자해상도 및 우수관망 간소화 수준에 따른 도시홍수 예측 성능검토 (Performance Analysis of Grid Resolution and Storm Sewage Network for Urban Flood Forecasting)

  • 심상보;김형준
    • 한국안전학회지
    • /
    • 제39권1호
    • /
    • pp.70-81
    • /
    • 2024
  • With heavy rainfall due to extreme weather causing increasing damage, the importance of urban flood forecasting continues to grow. To forecast urban flooding accurately and promptly, a sewer network and surface grid with appropriate detail are necessary. However, for urban areas with complex storm sewer networks and terrain structures, high-resolution grids and detailed networks can significantly prolong the analysis. Therefore, determining an appropriate level of network simplification and a suitable surface grid resolution is essential to secure the golden time for urban flood forecasting. In this study, InfoWorks ICM, a software program capable of 1D-2D coupled simulation, was used to examine urban flood forecasting performance for storm sewer networks with various levels of simplification and different surface grid resolutions. The inundation depth, inundation area, and simulation time were analyzed for each simplification level. Based on the analysis, the simulation time was reduced by up to 65% upon simplifying the storm sewer networks and by up to 96% depending on the surface grid resolution; further, the inundation area was overestimated as the grid resolution increased. This study provides insights into optimizing the simplification level and surface grid resolution for storm sewer networks to ensure efficient and accurate urban flood forecasting.

케이블 화재의 화염전파 해석을 위한 FDS 모델의 격자민감도 평가 (Assessment of Grid Sensitivity in the FDS Field Model to Simulate the Flame Propagation of an Electric Cable Fire)

  • 김성찬;이성혁
    • 한국안전학회지
    • /
    • 제23권4호
    • /
    • pp.30-35
    • /
    • 2008
  • The present study has been conducted to examine the effect of grid resolution on the predicted results for electric cable fire using pyrolysis model in FDS(Fire Dynamics Simulator, version 5). The grid independent test for different grid resolutions has been performed for a PE coating cable and the grid resolution is defined by the non-dimensional characteristic length of fire and mean grid size. The calculated maximum heat release rate and mean flame spread rate were almost constant for higher grid resolution of 20${\sim}$25 and the computing time for the grid resolution takes approximately 20hours to solve flame propagation with pyrolysis model. The geometrical simplification of a electric cable dose not greatly affect on the maximum heat release rate and flame spread rate and the rectangular approximation of cable shape gives acceptable result comparing with the round cable with stepwise grid.

LES study of flow field and aerodynamic forces on a circular cylinder at Re=3900 with focus on grid resolution

  • Hongmiao Jing;Jitao Zhang;Qingkuan Liu;Yangxue Wang
    • Wind and Structures
    • /
    • 제36권3호
    • /
    • pp.175-200
    • /
    • 2023
  • The large eddy simulation (LES) of the flow around a circular cylinder is not only affected by the sub-grid scale (SGS) model but also by the grid resolution of the computational domain. To study the influence of different grids on the LES results, the LES simulations of the flow around a circular cylinder with different grids at Reynolds number (Re) = 3900 was performed. A circular computational domain with different radial growth rates and circumferential and spanwise grid numbers was adopted for the simulations. Meanwhile, the aerodynamic forces, wind pressure coefficients, mean and instantaneous flow fields, and the effect of grid resolution on them were comprehensively analyzed. The results indicate that the lift coefficient, wind pressure coefficient, and recirculation length are significantly affected by the radial growth rate of the grid and the circumferential grid number. The spanwise grid number has a significant influence on the three-dimensionality of the flow and plays an important role in velocity fluctuations in the wake region. Nevertheless, the aerodynamic coefficients and recirculation length are not sufficiently sensitive to the grid number in the spanwise direction. By comparing the results, it can be concluded that suitable and reliable LES results can be obtained when the radial growth rate is 1.03 or 1.05, the circumferential grid number is 160, 200, or 240, and the spanwise grid number is 64. A radial growth rate 1.05, circumferential grid number 160, and spanwise grid number 64 are recommended to reduce the grid amount and further improve the efficiency.

중규모 바람장 해석을 위한 Fine Mesh Model의 구성 (Composition of Fine Mesh Model for Explication of Mesoscale Wind Field)

  • 이화운;김유근
    • 한국환경과학회지
    • /
    • 제4권2호
    • /
    • pp.159-168
    • /
    • 1995
  • To predict reasonably the movement and the concentration of the pollutants in the coastal area. A simulation model should be prepared considering detail topography with land-sea and the urban effects, and the resolution near the source. The explicit method can not be applied due to the instability of the numerical calculation in high horizontal-grid resolution, while the ADI scheme satisfied with the high horizontal grid resolution and can be used in the fine mesh system which shows the detail topography, atmospheric flow The ADI method which studied the high horizontal grid resolution was excellent. The two dimensional model used in the study using ADI method is proved as a reasonable model to predict the wind field in any small scale area including mountainous coastal urban area.

  • PDF

Super Resolution Image Reconstruction using the Maximum A-Posteriori Method

  • Kwon Hyuk-Jong;Kim Byung-Guk
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.115-118
    • /
    • 2004
  • Images with high resolution are desired and often required in many visual applications. When resolution can not be improved by replacing sensors, either because of cost or hardware physical limits, super resolution image reconstruction method is what can be resorted to. Super resolution image reconstruction method refers to image processing algorithms that produce high quality and high resolution images from a set of low quality and low resolution images. The method is proved to be useful in many practical cases where multiple frames of the same scene can be obtained, including satellite imaging, video surveillance, video enhancement and restoration, digital mosaicking, and medical imaging. The method can be either the frequency domain approach or the spatial domain approach. Much of the earlier works concentrated on the frequency domain formulation, but as more general degradation models were considered, later researches had been almost exclusively on spatial domain formulations. The method in spatial domains has three stages: i) motion estimate or image registration, ii) interpolation onto high resolution grid and iii) deblurring process. The super resolution grid construction in the second stage was discussed in this paper. We applied the Maximum A­Posteriori(MAP) reconstruction method that is one of the major methods in the super resolution grid construction. Based on this method, we reconstructed high resolution images from a set of low resolution images and compared the results with those from other known interpolation methods.

  • PDF

OGC Grid Coverage 기반 다기능 변화탐지 시스템의 구현 (Implementation of a Change Detection System based on OGC Grid Coverage Specification)

  • 임영재;정수;김경옥
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2003년도 추계학술발표회 논문집
    • /
    • pp.379-384
    • /
    • 2003
  • In this paper, we introduce a change detection system that can extract and analyze change elements from high-resolution satellite imagery as well as low- or middle-resolution satellite imagery. The developed system provides not only 7 pixel-based methods that can be used to detect change from low- or middle-resolution satellite images but also a float window concept that can be used in manual change detection from high-resolution satellite images. This system enables fast process of the very large image, because it is constituted by OGC grid coverage components. Also new change detection algorithms can be easily added into this system if once they are made into grid coverage components.

  • PDF

Review of Operational Multi-Scale Environment Model with Grid Adaptivity

  • Kang, Sung-Dae
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제10권S_1호
    • /
    • pp.23-28
    • /
    • 2001
  • A new numerical weather prediction and dispersion model, the Operational Multi-scale Environment model with Grid Adaptivity(OMEGA) including an embedded Atmospheric Dispersion Model(ADM), is introduced as a next generation atmospheric simulation system for real-time hazard predictions, such as severe weather or the transport of hazardous release. OMEGA is based on an unstructured grid that can facilitate a continuously varying horizontal grid resolution ranging from 100 km down to 1 km and a vertical resolution from 20 -30 meters in the boundary layer to 1 km in the free atmosphere. OMEGA is also naturally scale spanning and time. In particular, the unstructured grid cells in the horizontal dimension can increase the local resolution to better capture the topography or important physical features of the atmospheric circulation and cloud dynamics. This means the OMEGA can readily adapt its grid to a stationary surface, terrain features, or dynamic features in an evolving weather pattern. While adaptive numerical techniques have yet to be extensively applied in atmospheric models, the OMEGA model is the first to exploit the adaptive nature of an unstructured gridding technique for atmospheric simulation and real-time hazard prediction. The purpose of this paper is to provide a detailed description of the OMEGA model, the OMEGA system, and a detailed comparison of OMEGA forecast results with observed data.

  • PDF

디지털 방사선 영상에서 그리드 각도의 최적화와 변조 모델에 기초한 그리드 왜곡의 제거 (Grid Angle Optimization and Grid Artifact Reduction in Digital Radiography Images Based on the Modulation Model)

  • 김동식
    • 대한전자공학회논문지SP
    • /
    • 제48권3호
    • /
    • pp.30-41
    • /
    • 2011
  • 산란선을 흡수하여 보다 선명한 x선 영상을 얻기 위하여 산란방지 그리드를 사용하여 투사영상을 얻는데, 이때 그리드로 인한 왜곡이 발생한다. 본 논문에서는 회전된 그리드를 사용하여 그리드 왜곡의 제거가 용이하도록 x선 디지털 영상을 얻는 방법에 있어서 기존의 왜곡 성분의 중심주파수를 가장자리로 보내는 경우를 보다 심도 있게 분석하여 확장된 결과를 도출하였으며, min-max 개념에서 주어진 그리드 밀도에 대하여 최적화하는 방법을 제시하였다. 또한 실질적으로 사용가능한 그리드 밀도에 대하여 적절한 그리드 각도를 제시하고 그러한 그리드를 사용하여 획득한 x선 디지털 영상에서 그리드 왜곡이 용이한 알고리듬을 제안하고 그 성능을 비교해보았는데, 원영상의 해상도를 어느 정도 유지하면서 그리드 왜곡을 줄일 수 있었다.

Implementation of an Enhanced Change Detection System based on OGC Grid Coverage Specification

  • Lim, Young-Jae;Kim, Hong-Gab;Kim, Kyung-Ok
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1099-1101
    • /
    • 2003
  • Change detection technology, which discovers the change information on the surface of the earth by comparing and analyzing multi-temporal satellite images, can be usefully applied to the various fields, such as environmental inspection, urban planning, forest policy, updating of geographical information and the military usage. In this paper, we introduce a change detection system that can extract and analyze change elements from high-resolution satellite imagery as well as low- or middle-resolution satellite imagery. The developed system provides not only 7 pixelbased methods that can be used to detect change from low- or middle-resolution satellite images but also a float window concept that can be used in manual change detection from highresolution satellite images. This system enables fast access to the very large image, because it is constituted by OGC grid coverage components. Also new change detection algorithms can be easily added into this system if once they are made into grid coverage components.

  • PDF