DOI QR코드

DOI QR Code

LES study of flow field and aerodynamic forces on a circular cylinder at Re=3900 with focus on grid resolution

  • Hongmiao Jing (State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University) ;
  • Jitao Zhang (School of Civil Engineering, Shijiazhuang Tiedao University) ;
  • Qingkuan Liu (State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University) ;
  • Yangxue Wang (School of Civil Engineering, Shijiazhuang Tiedao University)
  • Received : 2022.12.23
  • Accepted : 2023.03.01
  • Published : 2023.03.25

Abstract

The large eddy simulation (LES) of the flow around a circular cylinder is not only affected by the sub-grid scale (SGS) model but also by the grid resolution of the computational domain. To study the influence of different grids on the LES results, the LES simulations of the flow around a circular cylinder with different grids at Reynolds number (Re) = 3900 was performed. A circular computational domain with different radial growth rates and circumferential and spanwise grid numbers was adopted for the simulations. Meanwhile, the aerodynamic forces, wind pressure coefficients, mean and instantaneous flow fields, and the effect of grid resolution on them were comprehensively analyzed. The results indicate that the lift coefficient, wind pressure coefficient, and recirculation length are significantly affected by the radial growth rate of the grid and the circumferential grid number. The spanwise grid number has a significant influence on the three-dimensionality of the flow and plays an important role in velocity fluctuations in the wake region. Nevertheless, the aerodynamic coefficients and recirculation length are not sufficiently sensitive to the grid number in the spanwise direction. By comparing the results, it can be concluded that suitable and reliable LES results can be obtained when the radial growth rate is 1.03 or 1.05, the circumferential grid number is 160, 200, or 240, and the spanwise grid number is 64. A radial growth rate 1.05, circumferential grid number 160, and spanwise grid number 64 are recommended to reduce the grid amount and further improve the efficiency.

Keywords

Acknowledgement

The work described in this paper was supported by the Youth Program of National Natural Science Foundation of China (Grant No. 52208494), the Youth Program of Natural Science Foundation of Hebei Province of China (Grant No. E2021210063), the Innovation research group project of National Natural Sciences Foundation of China (Grant No. E2022210078), the Science and Technology Winter Olympics Special Project (Grant No. 21475402D), the High-end Talents Project of Hebei Province of China (Grant No. [2019] 63) and the Graduate Student Innovation Funding Project of Shijiazhuang Tiedao University (YC2023068).

References

  1. Alemi, M., Pego, J.P. and Maia, R. (2017), "Numerical investigation of the flow behavior around a single cylinder using large eddy simulation model", Ocean Eng., 145, 464-478. https://doi.org/10.1016/j.oceaneng.2017.09.030.
  2. Ali, H., Khan, N.B., Jameel, M., Khan, A., Sajid, M., Munir, A. and Galal, A.M. (2022), "Numerical investigation of the effect of spanwise length and mesh density on flow around cylinder at Re= 3900 using LES model", Plos One, 17(4), e0266065. https://doi.org/10.1371/journal.pone.0266065.
  3. Anderson, J.D. and Wendt, J. (1995), Comput. Fluid Dynam., McGraw-Hill, New York, NY, USA.
  4. Beaudan, P. and Moin, P. (1994), "Numerical experiments on the flow past a circular cylinder at sub-critical Reynolds number[J]", Technical Report TF-62, CTR Annual Research Briefs, NASA Ames/Stanford University.
  5. Breuer, M. (1998a), "Large eddy simulation of the subcritical flow past a circular cylinder: numerical and modeling aspects", Int. J. Numer. Meth. Fluid., 28(9), 1281-1302. https://doi.org/10.1002/(SICI)1097-0363(19981215)28:9<1281::AID-FLD759>3.0.CO;2-%23.
  6. Breuer, M. (1998b), "Numerical and modeling influences on large eddy simulations for the flow past a circular cylinder", Int. J. Heat Fluid Flow, 19(5), 512-521. https://doi.org/10.1016/S0142-727X(98)10015-2.
  7. Deng, G.B., Piquet, J., Queutey, P. and Visonneau, M. (1993), "Vortex-shedding flow predictions with eddy-viscosity models", Eng. Turbul. Model. Exp., 143-152. https://doi.org/10.1016/B978-0-444-89802-9.50020-4.
  8. Dong, S., Karniadakis, G.E., Ekmekci, A. and Rockwell, D. (2006), "A combined direct numerical simulation-particle image velocimetry study of the turbulent near wake", J. Fluid Mech., 569, 185-207. https://doi.org/10.1017/S0022112006002606.
  9. Feng, Z., Qi, H., Huang, X., Liu, S. and Liu, J. (2021), "Comparisons of subgrid-scale models for Open FOAM large-eddy simulation", J. Phys. Conf. Series, 1802(4), https://doi.org/10.1088/1742-6596/1802/4/042088.
  10. Franke, J. and Frank, W. (2002), "Large eddy simulation of the flow past a circular cylinder at ReD= 3900", J. Wind. Eng. Ind. Aerodyn., 90(10), 1191-1206. https://doi.org/10.1016/S0167-6105(02)00232-5.
  11. Greifzu, F., Kratzsch, C., Forgber, T., Lindner, F. and Schwarze, R. (2016), "Assessment of particle-tracking models for dispersed particle-laden flows implemented in Open FOAM and ANSYS FLUENT", Eng. Appl. Comput. Fluid Mech., 10(1), 30-43. https://doi.org/10.1080/19942060.2015.1104266.
  12. Issa, R.I. (1986), "Solution of the implicitly discretized fluid flow equations by operator-splitting", J. Comput. Phys., 62(1), 40-65. https://doi.org/10.1016/0021-9991(86)90099-9.
  13. Jeong, J. and Hussain, F. (1995), "On the identification of a vortex", J. Fluid Mech., 285, 69-94. https://doi.org/10.1017/S0022112095000462.
  14. Jiang, H. and Cheng, L. (2021), "Large-eddy simulation of flow past a circular cylinder for Reynolds numbers 400 to 3900", Phys. Fluids, 33(3), 034119. https://doi.org/10.1063/5.0041168.
  15. Khan, N.B., Ibrahim, Z., Bin Mohamad Badry, A.B., Jameel, M. and Javed, M.F. (2019a), "Numerical investigation of flow around cylinder at Reynolds number= 3900 with large eddy simulation technique: effect of spanwise length and mesh resolution", Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 233(2), 417-427. https://doi.org/10.1177/1475090217751326.
  16. Khan, N.B., Ibrahim, Z.B., Ali, M. A., Jameel, M., Khan, M.I., Javanmardi, A. and Oyejobi D.O. (2019b), "Numerical simulation of flow with large eddy simulation at Re= 3900: A study on the accuracy of statistical quantities", Int. J. Numer. Meth. Heat Fluid Flow, 30(5), 2397-2409. https://doi.org/10.1108/HFF-11-2018-0619.
  17. Kravchenko, A.G. and Moin, P. (2000), "Numerical studies of flow over a circular cylinder at Re D= 3900", Phys. Fluid., 12(2), 403-417. https://doi.org/10.1063/1.870318.
  18. Lehmkuhl, O., Rodriguez, I., Borrell, R. and Oliva, A. (2013), "Low-frequency unsteadiness in the vortex formation region of a circular cylinder", Phys. Fluid., 25(8), 085109. https://doi.org/10.1063/1.4818641.
  19. Leonard, T., Gicquel, L.Y., Gourdain, N. and Duchaine, F. (2015), "Steady/unsteady reynolds-averaged navier-stokes and large eddy simulations of a turbine blade at high subsonic outlet mach number", J. Turbomach., 137(4), 041001. https://doi.org/10.1115/1.4028493.
  20. Lourenco, L.M. (1993), "Characteristics of the plane turbulent near wake of a circular cylinder", A particle image velocimetry study.
  21. Lysenko, D.A., Ertesvag, I.S. and Rian, K.E. (2012), "Large-eddy simulation of the flow over a circular cylinder at Reynolds number 3900 using the Open FOAM toolbox", Flow Turbul. Combust., 89(4), 491-518. https://doi.org/10.1007/s10494-012-9405-0.
  22. Ma, X., Karamanos, G.S. and Karniadakis, G.E. (2000), "Dynamics and low-dimensionality of a turbulent near wake", J. Fluid Mech., 410, 29-65. https://doi.org/10.1017/S0022112099007934.
  23. Mani, A., Moin, P. and Wang, M. (2009), "Computational study of optical distortions by separated shear layers and turbulent wakes." J. Fluid Mech., 625, 273-298. https://doi.org/10.1017/S0022112008005697.
  24. Meyer, M., Hickel, S. and Adams, N.A. (2010), "Assessment of implicit large-eddy simulation with a conservative immersed interface method for turbulent cylinder flow", Int. J. Heat Fluid Flow, 31(3), 368-377. https://doi.org/10.1016/j.ijheatfluidflow.2010.02.026.
  25. Mittal, S. (2013), "Free vibrations of a cylinder: 3-D computations at Re= 1000", J. Fluid. Struct., 41, 109-118. https://doi.org/10.1016/j.jfluidstructs.2013.02.017.
  26. Molochnikov, V.M., Mikheev, N.I., Mikheev, A.N., Paereliy, A.A., Dushin, N.S. and Dushina, O.A. (2019), "SIV measurements of flow structure in the near wake of a circular cylinder at Re= 3900", Fluid Dynam. Res. 51(5), 055505. https://doi.org/10.1088/1873-7005/ab2c27.
  27. Nicoud, F. and Ducros, F. (1999), "Subgrid-scale stress modelling based on the square of the velocity gradient tensor." Flow, Turbul. Combust., 62(3), 183-200. https://doi.org/10.1023/A:1009995426001.
  28. Norberg, C. (1994), "An experimental investigation of the flow around a circular cylinder: influence of aspect ratio", J. Fluid Mech., 258, 287-316. https://doi.org/10.1017/S0022112094003332.
  29. Norberg, C. (2001), "Flow around a circular cylinder: aspects of fluctuating lift." J. Fluid. Struct., 15(3-4), 459-469. https://doi.org/10.1006/jfls.2000.0367.
  30. Ong, L. and J. Wallace. (1996), "The velocity field of the turbulent very near wake of a circular cylinder." Exp. Fluids, 20(6), 441-453. https://doi.org/10.1007/BF00189383.
  31. Ouvrard, H., Koobus, B., Dervieux, A. and Salvetti, M.V. (2010), "Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids", Comput. Fluids, 39(7), 1083-1094. https://doi.org/10.1016/j.compfluid.2010.01.017.
  32. Park, N., Lee, S., Lee, J. and Choi, H. (2006), "A dynamic subgrid-scale eddy viscosity model with a global model coefficient", Phys. Fluids, 18(12), 125109. https://doi.org/10.1063/1.2401626.
  33. Parnaudeau, P., Carlier, J., Heitz, D. and Lamballais, E. (2008), "Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900", Phys. Fluids, 20(8), 085101. https://doi.org/10.1063/1.2957018.
  34. Rajani, B.N., Kandasamy, A. and Majumdar, S. (2012), "On the reliability of eddy viscosity based turbulence models in predicting turbulent flow past a circular cylinder using URANS approach", J. Appl. Fluid Mech., 5(11), 67-79. https://doi.org/10.36884/JAFM.5.01.11959.
  35. Rajani, B.N., Kandasamy, A. and Majumdar, S. (2016), "LES of flow past circular cylinder at Re= 3900", J. Appl. Fluid Mech., 9(3), https://doi.org/1421-1435.10.18869/acadpub.jafm.68.228.24178.
  36. Rodi, W., Ferziger, J.H., Breuer, M. and Pourquie, M. (1997), "Status of large eddy simulation: results of a workshop", Transactions-American Soc. Mech. Eng. J. Fluids Eng., 119, 248-262. https://doi.org/10.1115/1.2819128.
  37. Rodriguez, I., Lehmkuhl, O., Chiva, J., Borrell, R. and Oliva, A. (2015), "On the flow past a circular cylinder from critical to super-critical reynolds numbers: wake topology and vortex shedding", Int. J. Heat Fluid Flow, 55, 91-103. https://doi.org/10.1016/j.ijheatfluidflow.2015.05.009.
  38. Sidebottom, W., Ooi, A. and Jones, D. (2015), "A parametric study of turbulent flow past a circular cylinder using large eddy simulation", J. Fluids Eng., 137(9), https://doi.org/10.1115/1.4030380.
  39. Son, J.S. and Hanratty, T. J. (1969), "Velocity gradients at the wall for flow around a cylinder at Reynolds numbers from 5 × 103 to 105", J. Fluid Mech., 35(2), 353-368. https://doi.org/10.1017/S0022112069001157.
  40. Tian, G. and Xiao, Z. (2020), "New insight on large-eddy simulation of flow past a circular cylinder at subcritical Reynolds number 3900", AIP Adv., 10(8), 085321. https://doi.org/10.1063/5.0012358.
  41. Van Driest, E.R. (1956), "On turbulent flow near a wall", J. Aeronaut. Sci., 23(11), 1007-1011. https://doi.org/10.2514/8.3713.
  42. Welch, P. (1967), "The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms." IEEE Transact. Audio Electroacoustics, 15(2), 70-73. https://doi.org/10.1109/TAU.1967.1161901.
  43. Weller, H.G., Tabor, G., Jasak, H. and Fureby, C. (1998), "A tensorial approach to computational continuum mechanics using object-oriented techniques", Comput. Phys., 12(6), 620-631. https://doi.org/10.1063/1.168744.
  44. Wissink, J.G. and Rodi, W. (2008), "Numerical study of the near wake of a circular cylinder", Int. J. Heat Fluid Flow, 29(4), 1060-1070. https://doi.org/10.1016/j.ijheatfluidflow.2008.04.001.
  45. Wornom, S., Ouvrard, H., Salvetti, M.V., Koobus, B. and Dervieux, A. (2011), "Variational multiscale large-eddy simulations of the flow past a circular cylinder: Reynolds number effects", Comput. Fluids, 47(1), 44-50. https://doi.org/10.1016/j.compfluid.2011.02.011.
  46. Young, M.E. and Ooi, A. (2007), "Comparative assessment of LES and URANS for flow over a cylinder at a reynolds number of 3900", 16th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia, December.
  47. Zdravkovich, M.M. (1990), "Conceptual overview of laminar and turbulent flows past smooth and rough circular cylinders", J. Wind Eng. Ind. Aerodyn., 33(1-2), 53-62. https://doi.org/10.1016/0167-6105(90)90020-D.
  48. Zhang, H., Yang, J.M., Xiao, L.F. and Lu, H.N. (2015), "Large-eddy simulation of the flow past both finite and infinite circular cylinders at Re= 3900", J. Hydrodyn., 27(2), 195-203. https://doi.org/10.1016/S1001-6058(15)60472-3.