• Title/Summary/Keyword: grid graph

Search Result 63, Processing Time 0.024 seconds

Analysis on the upper bound of strong Roman-domination in grid networks (그리드 네트워크의 강한 Roman 지배수 상계에 대한 해석)

  • Lee, Hoon;Sohn, Moo Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.8
    • /
    • pp.1114-1122
    • /
    • 2018
  • In this paper, we propose a theoretical framework for provisioning marginal resources in wired and wireless computer networks which include Internet. In more detail, we propose a mathematical model for the upper bounds of marginal capacity in grid networks, where the resource is designed a priori by normal traffic estimation and marginal resource is prepared for unexpected events such as natural disasters and abrupt flash crowd in public affairs. To be specific, we propose a method to evaluate an upper bound for minimum marginal capacity for an arbitrary grid topology using the concept of a strong Roman domination number. To that purpose, we introduce a graph theory to model and analyze the characteristics of general grid structure networks. After that we propose a new tight upper bound for the strong Roman domination number. Via a numerical example, we show the validity of the proposition.

Programming Interface for DAG-based Co-scheduling of GirdRPC (GridRPC의 DAG 기반 Co-scheduling을 위한 프로그래밍 인터페이스)

  • Choi, Ji-Hyun;Lee, Dong-Woo;Kim, Mi-Ok;Ramakrishna, R.S.
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11a
    • /
    • pp.189-192
    • /
    • 2003
  • 이 논문에서는 그리드환경에서 Remote Procedure Call(RPC) 프로그래밍 인터페이스를 위한 메커니즘인 GridRPC 의 성능향상을 위해 DAG 기반의 Co-scheduling API 를 제안한다. 네트워크 상의 통신횟수를 줄임으로써 GridRPC call 의 최적화를 도모하기 위한 프로그래밍 인터페이스와 이를 가능하게 하는 서버구조를 제안한다. DAG 기반의 co-scheduling 은 서버-클라이언트간의 연산에 사용되는 입력값과 출력값들의 흐름을 분석하여 사용자로 하여금 DAG(Directed Acyclic Graph)로 GridRPC call 들을 구성하고 이를 기반으로 GridRPC call 들을 최적화하는 방법이다. 또한, GridRPC가 Client Interface 이기 때문에 생기는 문제점인 서버간의 지원의 문제점을 SOAP 서버의 Wrapping 을 통해 해결한다.

  • PDF

Image Segmentation using Multi-scale Normalized Cut (다중스케일 노멀라이즈 컷을 이용한 영상분할)

  • Lee, Jae-Hyun;Lee, Ji Eun;Park, Rae-Hong
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.609-618
    • /
    • 2013
  • This paper proposes a fast image segmentation method that gives high segmentation performance as graph-cut based methods. Graph-cut based image segmentation methods show high segmentation performance, however, the computational complexity is high to solve a computationally-intensive eigen-system. This is because solving eigen-system depends on the size of square matrix obtained from similarities between all pairs of pixels in the input image. Therefore, the proposed method uses the small-size square matrix, which is obtained from all the similarities among regions obtained by segmenting locally an image into several regions by graph-based method. Experimental results show that the proposed multi-scale image segmentation method using the algebraic multi-grid shows higher performance than existing methods.

RBAC-based Trust Negotiation Model for Grid Security (그리드 보안을 위한 역할 기반의 신뢰 협상 모델)

  • Cho, Hyun-Sug;Lee, Bong-Hwan
    • The KIPS Transactions:PartC
    • /
    • v.15C no.6
    • /
    • pp.455-468
    • /
    • 2008
  • In this paper, we propose FAS model for establishing trust based on digital certificates in Grid security framework. The existing RBAC(Role Based Access Control) model is extended to provide permissions depending on the users‘ roles. The FAS model is designed for a system independent integrated Grid security by detailing and extending the fundamental architecture of user, role, and permission. FAS decides each user’s role, allocates access right, and publishes attribute certificate. FAS is composed of three modules: RDM, PCM, and CCM. The RDM decides roles of the user during trust negotiation process and improves the existing low level Grid security in which every single user maps a single shared local name. Both PCM and CCM confirm the capability of the user based on various policies that can restrict priority of the different user groups and roles. We have analyzed the FAS strategy with the complexity of the policy graph-based strategy. In particular, we focused on the algorithm for constructing the policy graph. As a result, the total running time was significantly reduced.

A Path-Finding Algorithm on an Abstract Graph for Extracting Estimated Search Space (탐색 영역 추출을 위한 추상 그래프 탐색 알고리즘 설계)

  • Kim, Ji-Soo;Lee, Ji-Wan;Moon, Dae-Jin;Cho, Dae-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.147-150
    • /
    • 2008
  • The real road network is regarded as a grid, and the grid is divided by fixed-sized cells. The path-finding is composed of two step searching. First searching travels on the abstract graph which is composed of a set of psuedo vertexes and a set of psuedo edges that are created by real road network and fixed-sized cells. The result of the first searching is a psuedo path which is composed of a set of selected psuedo edges. The cells intersected with the psuedo path are called as valid cells. The second searching travels with $A^*$ algorithm on valid cells. As pruning search space by removing the invalid cells, it would be possible to reduce the cost of exploring on real road network. In this paper, we present the method of creating the abstract graph and propose a path-finding algorithm on the abstract graph for extracting search space before traveling on real road network.

  • PDF

A Shortest Path Planning Algorithm for Mobile Robots Using a Modified Visibility Graph Method

  • Lee, Duk-Young;Koh, Kyung-Chul;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1939-1944
    • /
    • 2003
  • This paper presents a global path planning algorithm based on a visibility graph method, and applies additionally various constraints for constructing the reduced visibility graph. The modification algorithm for generating the rounded path is applied to the globally shortest path of the visibility graph using the robot size constraint in order to avoid the obstacle. In order to check the visibility in given 3D map data, 3D CAD data with VRML format is projected to the 2D plane of the mobile robot, and the projected map is converted into an image for easy map analysis. The image processing are applied to this grid map for extracting the obstacles and the free space. Generally, the tree size of visibility graph is proportional to the factorial of the number of the corner points. In order to reduce the tree size and search the shortest path efficiently, the various constraints are proposed. After short paths that crosses the corner points of obstacles lists up, the shortest path among these paths is selected and it is modified to the combination of the line path and the arc path for the mobile robot to avoid the obstacles and follow the rounded path in the environment. The proposed path planning algorithm is applied to the mobile robot LCAR-III.

  • PDF

Graph Cut-based Automatic Color Image Segmentation using Mean Shift Analysis (Mean Shift 분석을 이용한 그래프 컷 기반의 자동 칼라 영상 분할)

  • Park, An-Jin;Kim, Jung-Whan;Jung, Kee-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.11
    • /
    • pp.936-946
    • /
    • 2009
  • A graph cuts method has recently attracted a lot of attentions for image segmentation, as it can globally minimize energy functions composed of data term that reflects how each pixel fits into prior information for each class and smoothness term that penalizes discontinuities between neighboring pixels. In previous approaches to graph cuts-based automatic image segmentation, GMM(Gaussian mixture models) is generally used, and means and covariance matrixes calculated by EM algorithm were used as prior information for each cluster. However, it is practicable only for clusters with a hyper-spherical or hyper-ellipsoidal shape, as the cluster was represented based on the covariance matrix centered on the mean. For arbitrary-shaped clusters, this paper proposes graph cuts-based image segmentation using mean shift analysis. As a prior information to estimate the data term, we use the set of mean trajectories toward each mode from initial means randomly selected in $L^*u^*{\upsilon}^*$ color space. Since the mean shift procedure requires many computational times, we transform features in continuous feature space into 3D discrete grid, and use 3D kernel based on the first moment in the grid, which are needed to move the means to modes. In the experiments, we investigate the problems of mean shift-based and normalized cuts-based image segmentation methods that are recently popular methods, and the proposed method showed better performance than previous two methods and graph cuts-based automatic image segmentation using GMM on Berkeley segmentation dataset.

A Study on the Stability Analysis of the Bank Revetment at Urban Streams in Flood Times (홍수시 도시하천의 호안 안정성 분석에 관한 연구)

  • Kim, Chul;Park, Nam-Hee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.139-145
    • /
    • 2010
  • Recently, close-to-nature stream improvement works have been carried out in urban streams, where eco-friendly bank revetment methods have been adopted. These bank revetment methods are vulnerable to be damaged or washed away by floods compared to the traditional methods which use concrete materials. Damage analysis methods on the urban streams by the floods of severe rain storm are presented. The analysis methods are the graph-using method and the grid method, which are derived from the survey results at Gwangju stream. Damage analysis grid which is intersected velocity grid and material strength grid is the highest correlation with the damage survey grid. The biggest damage on the bank revetments have been occurred around the crossing structures. Big damages have also been occurred in the connection of low water revetment and the terrace land, and around the structures in the terrace land of the stream.

L(3, 2, 1)-LABELING FOR CYLINDRICAL GRID: THE CARTESIAN PRODUCT OF A PATH AND A CYCLE

  • Kim, Byeong Moon;Hwang, Woonjae;Song, Byung Chul
    • Korean Journal of Mathematics
    • /
    • v.25 no.2
    • /
    • pp.279-301
    • /
    • 2017
  • An L(3, 2, 1)-labeling for the graph G = (V, E) is an assignment f of a label to each vertices of G such that ${\mid}f(u)-f({\upsilon}){\mid}{\geq}4-k$ when $dist(u,{\upsilon})=k{\leq}3$. The L(3, 2, 1)-labeling number, denoted by ${\lambda}_{3,2,1}(G)$, for G is the smallest number N such that there is an L(3, 2, 1)-labeling for G with span N. In this paper, we compute the L(3, 2, 1)-labeling number ${\lambda}_{3,2,1}(G)$ when G is a cylindrical grid, which is the cartesian product $P_m{\Box}C_n$ of the path and the cycle, when $m{\geq}4$ and $n{\geq}138$. Especially when n is a multiple of 4, or m = 4 and n is a multiple of 6, then we have ${\lambda}_{3,2,1}(G)=11$. Otherwise ${\lambda}_{3,2,1}(G)=12$.